www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana NARAYANA JUNIOR COLLEGE NARAYANA JUNIOR COLLEGE AP EAMCET-2016 SET-A <u>MATHS</u>

1. The domain of the function
$$f(x) = \sqrt{\log_{0.5} x!}$$

1. $\{0,1,2,3,...\}$ 2. $\{1,2,3,...\}$ 3. $(0,\infty)$ 4. $\{0,1\}$
KEY: 4
HINT: $\log_{0.2} \angle x \ge \log_{0.2} 1$
 $\Rightarrow \angle x \le 1$
 $x = \{0,1\}$
2. If $f(x) = |x-1| + |x-2| + |x-3|, 2 < x < 3$, then f is
1. an onto function but not one-one
3. a bijection
KEY: 3
HINT: $2 < x < 3 \Rightarrow f(x) = (x-1) + (x-2) - (x-3)$
 $= x-1+x-2-x+3=x$
3. The greatest positive integer which divides $(n+16)(n+17)(n+18)(n+19)$, for all positive
integers n, is
1. 6 2. 24 3. 28 4. 20
KEY: 2
HINT: Product of four consecutive positive integers is divisible by [4
4. If a,b,c are distinct positive real numbers, then the value of the determinant $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$
1. <0 2. >0 3. 0 4. ≥ 0
KEY: 1
HINT: $3abc-a^3-b^3-c^3=-(a^3+b^3+c^3-3abc)$
 $=-(a+b+c)\{a^2+b^2+c^2-ab-bc-ca\} < 0$
5. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in geometric progression with the same common ratio, then
the points $(x_1, y_1), (x_2, y_2), (x_3, y_4)$ are
1. vertices of an equilateral triangle 2. vertices of a right angled triangle
3. vertices of a right angled isosceles triangle 4. Collinear
KEY: 4
HINT: $x_1, x_2, x_3 = a, ar, ar^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P
 $y_1, y_2, y_3 = b, br, br^2$ are in G.P

Page 1 of 36

The equations x - y + 2z = 4, 3x + y + 4z = 6, x + y + z = 1 have 6. 1. unique solution 2. infinitely many solutions 3. no solution 4. two solutions **KEY: 2 HINT:** x - y + 2z = 4, $3x + y + 4z = 6 \Rightarrow 4x + 6z = 10$ 3x + y + 4z = 6, $x + y + z = 1 \Longrightarrow 2x + 3z = 5$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ The locus of the point representing the complex number z for which $|z+3|^2 - |z-3|^2 = 15$ is 7. 3. a straight line 1. a circle 2. a parabola 4. an ellipse **KEY: 3 HINT:** $z = x + iy \Rightarrow (x+3)^2 + y^2 - \{(x-3)^2 + y^2\} = 15$ $\Rightarrow 12x = 15$ $\frac{\left(1+i\right)^{2016}}{\left(1-i\right)^{2014}} =$ 8. 1. -2*i* 4. -2 **KEY: 1 HINT:** $\frac{(1+i)^{2016}}{(1-i)^{2014}} = \frac{\left\{ \left(1+i\right)^2 \right\}^{1008}}{\left\{ \left(1-i\right)^2 \right\}^{1007}} = \frac{\left(2i\right)^{1008}}{\left(-2i\right)^{1007}} = -2i$ If $|z_1| = 1, |z_2| = 2, |z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then the value of $|z_1 + z_2 + z_3|$ is 1. 3 2. 4 3. 8 4. 2 9. 3.8 **KEY: 4 HINT:** $|z_1| = 1, |z_2| = 2, |z_3| = 3$ $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$ $z_1\overline{z_1} = (z_1)^2$ $\overline{z_1} = \frac{\left|z_1\right|^2}{\overline{z_1}}$ $\left| (z_1 z_2 z_3) \left(\frac{9}{z_1} + \frac{4}{z_2} + \frac{1}{z_3} \right) \right| = 12$ (1) (2) (3) $\left| \frac{\left| z_3 \right|^2}{z_3} + \frac{\left| z_2 \right|^2}{z_2} + \frac{\left| z_1 \right|^2}{z_1} \right| = 12$ $\left|\overline{z_3} + \overline{z_2} + \overline{z_1}\right| = 2$ $|z_1 + z_2 + z_3| = 2$ If $1, z_1, z_2, ..., z_{n-1}$ are the n^{th} roots of unity, then $(1-z_1)(1-z_2)...(1-z_{n-1}) = 1$ 1 0 2. n-1 3. n10. 4.1 **KEY: 3 HINT:** verification (taking n = 3) $(1-z_1)(1-z_2)...(1-z_{n-1}) = n$

Page 2 of 36

NARAYANA JUNIOR COLLEGE							
11.	If $12^{4+2x^2} = (24\sqrt{3})^{3x^2-2}$, the	en $x =$					
	1. $\pm \sqrt{\frac{13}{12}}$	2. $\pm \sqrt{\frac{14}{15}}$	3. $\pm \sqrt{\frac{12}{13}}$	4. $\pm \sqrt{\frac{5}{14}}$			
KEY	12	V13	¥15	¥14			
	$T: 12^{4+2x^2} = \left(24\sqrt{3}\right)^{3x^2-2}$						
	$\left(2\sqrt{3}\right)^{8+4x^2} = \left(2\sqrt{3}\right)^{3(3x^2-2)}$						
	$8 + 4x^2 = 9x^2 - 6$ 5x ² = 14						
	$x = \pm \sqrt{\frac{14}{5}}$						
12.	The product and sum of t	he roots of the roots	s of the equation $ x^2 - 5 x$	-24 = 0 are respectively			
	164, 0	224, 5	3. 5, -24	4. 0, 72			
KEY	-	SRA	HE	,			
HINT	$f: x^2 - 5 x - 24 = 0$						
	$ x ^2 - 8 x + 3 x - 24 = 0$						
	x (x -8)+3(x -8)=0						
	$ x = 8, \qquad x = -3$						
	$x = \pm 8$ impossible						
	Sum = 0, product = -64						
13.	The number of real roots 1. 1	of the equation $x^3 + \frac{2}{2}$	$+3x^3 + 4x + 30 = 0$ is 3. 3	4. 5			
KEY				1. 0			
HINT	$f: x^5 + 3x^3 + 4x + 30 = 0$						
	f(x)++++ no positive root						
	$f(-x) = -x^5 - 3x^3 - 4x + 30 = 0$ + one-ve root						
14.	 number of real roots = 1 14. If the coefficients of the equation whose roots are k times the roots of the equation 						
	$x^3 + \frac{1}{4}x^2 - \frac{1}{16}x + \frac{1}{144 = 0}$, are integers then a possible value of k is						
	1. 3	2. 12	3. 9	4. 4			
KEY		1					
HINI	$f: f(x) = x^3 + \frac{1}{4}x^2 - \frac{1}{16}x + \frac{1}{16}x +$	$\frac{1}{44} = 0$					
	$f\left(\frac{x}{k}\right) = \frac{x^3}{k^3} + \frac{1}{4}\frac{x^2}{k^2} - \frac{1}{16}\frac{x}{k} + \frac{1}{4}\frac{x^2}{k^2} - $	$\frac{1}{144} = 0$					
	$= x^3 + \frac{1}{4}kx^2 - \frac{1}{16}k^2x + \frac{k^3}{144}$						
	K = 4,8,12,16 $\therefore \text{ Possible value of } K = 12$	K = 4,8,12	2				

Page **3** of **36**

www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana 🕿 NARAYANA JUNIOR COLLEGE The sum of all 4-digit numbers that can be formed using the digits 2,3,4,5,6 without repetition, 15. is

1. 533820 2. 532280 3. 533280 4. 532380 **KEY: 3**

HINT: {2,3,4,5,6} sum of four digit number without repetition

 $(2+3+4+5+6)({}^{5-1}P_{4-1})(1111)(20)(24)(1111) = 533280$

If a set A has 5 elements, then the number of ways of selecting two subsets P and Q from A 16. such that P and Q are mutually disjoint, is 3. 243 4. 729 1.64 2. 128

HINT: $A = \{a_1, a_2, a_3, a_4, a_5\}$ subset P,Q

 $\therefore P \cap Q = \phi$ so each element has three possibilities

 $\therefore 3 \times 3 \times 3 \times 3 \times 3 = 3^5 = 243$

17. The coefficient of x^4 in the expansion of $(1-x+x^2-x^3)^4$ is 1. 31 2. 30 3. 1 KEY: 1 HINT: $\cot x^4 (1-x+x^2-x^3)^4$

4. -14

$$= \left(1 - x + x^{2} - x^{3} + x^{4} - x^{5} + \dots x^{4} + x^{5} - x^{6}\right)^{4}$$

$$= \left[\left(1 + x\right)^{-1} - x^{4} \left(1 - x + x^{2} - x^{3} + \dots\right)\right]^{4}$$

$$= \left[\left(1 + x\right)^{-1} - x^{4} \left(1 + x\right)^{-1}\right]^{4}$$

$$= \left[1 - 4x + \frac{4(4+1)}{2!}x^{2} - \frac{4(4+1)(4+2)}{3!}x^{3} + \frac{4(4+1)(4+2)(4+3)}{4!}x^{4} \dots\right]$$

$$= x\left(1 - 4cx^{4} + 4c_{2}x^{8} \dots\right)$$

$$= -1 + 35 = 34$$

$$\cot x^{4} = (1)\left(-4\right) + \left(\frac{4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4}\right)(1)$$

$$= -4 + 35 = 31$$

If the middle term in the expansion of $(1+x)^{2n}$ is the greatest term, then x lies in the interval 18.

1.
$$\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$$
 2. $\left(\frac{n+1}{n}, \frac{n}{n+1}\right)$ 3. $(n-2, n)$ 4. $(n-1, n)$

KEY: 1

HINT: $(1+x)^{2n}$ middle ten $=T\frac{2n}{2}+1=T_{n+1}$ $P = \frac{Q(2n+1)|X|}{1+|X|}$ [p] = nn

Page 4 of 36

$\frac{n}{2n+1} < \frac{ x }{1+ x } < \frac{n+1}{2n+1}$	
$\frac{2n+1}{n} > \frac{1+ x }{ x } > \frac{2n+1}{n+1}$	
$\frac{2n+1}{n} > \frac{1}{ x } + 1 > \frac{2n+1}{n+1}$	
$\frac{2n+1}{n} - 1 > \frac{1}{ x } > \frac{2n+1}{n+1} - 1$	$\frac{2x+1-n-1}{n+1}$
$\frac{n+1}{n} > \frac{1}{ x } > \frac{n}{n+1}$	
$\frac{n}{n+1} < \left x \right < \frac{n+1}{n}$	

19. To find the coefficient of x^4 in the expansion of $\frac{3x}{(x-2)(x-1)}$, the interval in which the expansion is valid, is

$$1. -2 < x < \infty$$

$$1. -2 < x < \infty$$

$$2. -\frac{1}{2} < x < \frac{1}{2}$$

$$3. -1 < x < 1$$

$$4. -\infty < x < \infty$$
KEY: 3
HINT: $\frac{3x}{(x-2)(x-1)} = \frac{3x}{+2(1-\frac{x}{2})(1-x)}$

$$\left|\frac{x}{2}\right| < 1, \quad |x| < 1$$

$$\left|\frac{x}{2}\right| < 1, \quad |x| < 1$$

$$\left|\frac{x}{2}\right| < 1, \quad |x| < 1$$

$$\left|\frac{x}{2}\right| < 2, \quad |x| < 1$$

$$-2 < x < 2, \quad -1 < x < 1$$
Common interval is $-1 < x < 1$
Common interval is $-1 < x < 1$
20. If $(1 + \tan \alpha)(1 + \tan 4\alpha) = 2, \quad \alpha \in \left(0, \frac{\pi}{16}\right)$, then $\alpha = 1$

$$1. \frac{\pi}{20}$$
KEY: 1
HINT: $(1 + Tan\alpha)(1 + Tan4\alpha) = 2, \quad \alpha \in \left(0, \frac{\pi}{16}\right)$

$$(1 + TanA)(1 + Tan4\alpha) = 2 \Rightarrow A + B = \frac{\pi}{4} \Rightarrow \alpha + 4\alpha = \frac{\pi}{4}$$

$$\alpha = \frac{\pi}{20}$$
21.If $\cos \theta = \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}$, then one of the values of $\tan\left(\frac{\theta}{2}\right)$ is
$$1) \cot \frac{\beta}{2} \tan \frac{\alpha}{2}$$
2) $\tan \alpha \tan \frac{\beta}{2}$
3) $\tan \frac{\beta}{2} \cot \frac{\alpha}{2}$
4) $\tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2}$
KEY: 1
HINT:

Page 5 of 36

 $\frac{1}{\cos\theta} = \frac{1 - \cos\alpha\cos\beta}{\cos\alpha - \cos\beta}$ By componendo dividendo $\frac{1+\cos\theta}{1-\cos\theta} = \frac{(1+\cos\alpha)}{1-\cos\alpha} \frac{(1-\cos\beta)}{1+\cos\theta}$ We $\tan^2 \frac{\theta}{2} = \tan^2 \frac{\alpha}{2} \cot^2 \frac{\beta}{2}$. The value of the expression $\frac{1+\sin 2\alpha}{\cos(2\alpha-2\pi)\tan\left(\alpha-\frac{3\pi}{4}\right)} - \frac{1}{4}\sin 2\alpha\left(\cot\frac{\alpha}{2}+\cot\left(\frac{3\pi}{2}+\frac{\alpha}{2}\right)\right)$ is 22. 3) $\sin^2 \frac{\alpha}{2}$ 4) $\sin^2 \alpha$ 2) 1 1)0**KEY: 4** HINT: $\frac{1 + \frac{2 \tan \theta}{1 + \tan^2 \alpha}}{1 - \tan^2 \alpha + \tan \theta} - \frac{1}{4} \sin 2\alpha \left[\frac{2}{\tan \alpha}\right]$ $\overline{1 + \tan^2 \alpha} \overline{1 - \tan \alpha}$ $\frac{(1+\tan\alpha)^2}{(1+\tan\alpha)^2} - \frac{1}{4} \cdot \frac{4\sin\alpha.\cos\alpha.\cos\alpha}{\sin\alpha}$ $1 - \cos^2 \alpha = \sin^2 \alpha$ 23. If $\frac{1}{6}\sin\theta$, $\cos\theta$ and $\tan\theta$ are in geometric progression, then the solution set of θ is 1) $2n\pi \pm \left(\frac{\pi}{6}\right)$ 2) $2n\pi \pm \left(\frac{\pi}{3}\right)$ 3) $n\pi + (-1)^n \left(\frac{\pi}{3}\right)$ 4) $n\pi + \left(\frac{\pi}{3}\right)$ **KEY: 2** HINT: $\cos^2 \alpha = \frac{1}{6} \frac{\sin^2 \theta}{\cos \theta}$. THE NARAYANA GROUP $\Rightarrow 6 \cos^3 \theta = 1 - \cos^2 \theta$ $\Rightarrow 6 \cos^3 \theta + \cos^2 \theta - 1 = 0$ $\cos\theta = \frac{1}{2}$ satisfied $\theta = 2n\pi \pm \frac{\pi}{2}, n \in \mathbb{Z}$. 24. If $x = \sin(2\tan^{-1} 2)$ and $y = \sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right)$, then 3) x = 0 = y 4) x < y2) x = y1) x > y**KEY: 1** HINT: $x = \sin\left(\sin^{-1}\frac{2(2)}{1+2^2}\right) = \frac{4}{5}$

Page 6 of 36

Let
$$\tan^{-1} \frac{4}{3} = \theta$$
 and $y = \sin \frac{\theta}{2} = \sqrt{\frac{1-\cos\theta}{2}} = \frac{1}{\sqrt{5}}$
 $\Rightarrow \tan \theta = \frac{4}{3}$
25. If $\cosh(x) = \frac{5}{4}$, then $\cosh(3x) =$
1) $\frac{61}{16}$ 2) $\frac{63}{16}$ 3) $\frac{65}{16}$ 4) $\frac{61}{63}$
KEY: 3
HINT:
Cosh $3x = 4 \cosh^3 x - 3 \cos hx$
26. In $\triangle ABC$ if $x = \tan\left(\frac{B-C}{2}\right)\tan\frac{A}{2}$, $y = \tan\left(\frac{C-A}{2}\right)\tan\frac{B}{2}$ and $z = \tan\left(\frac{A-B}{2}\right)\tan\frac{C}{2}$ then $(x + y + z) =$
1) x yz 2) -x yz 3) 2 x yz 4) $\frac{1}{2}xyz$
KEY: 2
HINT:
 $x = \frac{b-c}{b+c} \Rightarrow \frac{1+x}{1-x} = \frac{b}{c}$
Similarly $\frac{1+y}{1-y} = \frac{c}{a}, \frac{1+z}{1-z} = 1$
 $\Rightarrow x + y + z = -xyz$
27. In $\triangle ABC$, if the sides a, b, c are in geometric progression and the largest angle exceeds the smallest angle by 60°, then $\cos B =$
1) $\frac{\sqrt{13}+1}{4}$ 2) $\frac{1-\sqrt{13}}{4}$ 3) 1 $ACOU(4), \frac{\sqrt{13}-1}{4}$
KEY: 4
HINT:
 $b^2 = ac$ [: $(A-C = 60^{\circ})$]
 $(: A+C = 180-B]$
 $\Rightarrow \sin^2B = \sin A \sin C$

 $2 \sin^2 B = 2 \sin A \sin C$

$$2 - 2\cos^2 B = \cos(A - C) - \cos(A + C)$$

- $2-2\cos^{2}B = \cos(60^{\circ}) + \cos B$ $4\cos^{2}B + 2\cos B - 3 = 0$
- 28. In a $\triangle ABC$ if $\angle A = 90^{\circ}$, then $\cos^{-1}\left(\frac{R}{r_2 + r_3}\right)$ is equal to 1) 90° 2) 30° 3) 60° 4) 45° KEY: 3

Page 7 of 36

HINT: $r_2 + r_3 = 4R \cos^2 \frac{A}{2}$ (Put A = 90°)

 $\cos^{-1}\left(\frac{R}{2R}\right) = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$

29. The Cartesian equation of the plane whose vector equation is

 $\overline{\gamma} = (1 + \lambda - \mu)\overline{i} + (2 - \lambda)\overline{j} + (3 - 2\lambda + 2\mu)\overline{k}$ where λ , μ are scalars is 4) 2x + z = 51) 2x + y = 5 2) 2x - y = 5 3) 2x - z = 5**KEY: 4** HINT: $\overline{r} = [\overline{i} + 2\overline{j} + 3\overline{k}] + \lambda[\overline{i} - \overline{j} - 2\overline{k}] + \mu[-\overline{i} + 2\overline{k}]$ $\begin{vmatrix} x-1 & y-2 & z-3 \\ 1 & -1 & -2 \\ -1 & 0 & 2 \end{vmatrix} = 0$ **30.** For three vectors $\overline{p}, \overline{q}$ and \overline{r} , if $\overline{r} = 3\overline{p} + 4\overline{q}$ and $2\overline{r} = \overline{p} - 3\overline{q}$ then 1) $|\overline{r}| < 2 |\overline{q}|$ and $\overline{r}, \overline{q}$ have the same direction 2) $|\overline{r}| > 2 |\overline{q}|$ and $\overline{r}.\overline{q}$ have opposite directions 3) $|\overline{r}| < 2 |\overline{q}|$ and $\overline{r}.\overline{q}$ have opposite direction 4) $|\overline{r}| > 2 |\overline{q}|$ and $\overline{r}.\overline{q}$ have the same direction **KEY: 2 HINT:** $\bar{r} = 3[2\bar{r} + 3\bar{q}] + 4\bar{q}$ $\Rightarrow -5\vec{r} = 13\vec{q}$ $\Rightarrow \vec{r} = -\frac{13}{5}\vec{q}[\vec{r},\vec{q} \text{ opposite signs}]$ $\Rightarrow |\overline{r}| > 2 |\overline{q}|$ 31. If $\overline{a} = 2\overline{i} + 3\overline{j} - 5\overline{k}$, $\overline{b} = m\overline{i} + n\overline{j} + 12\overline{k}$ and $\overline{a} \times \overline{b} = 0$, then (m, n) = $1)\left(\frac{-24}{5}, \frac{-36}{5}\right) \qquad 2)\left(\frac{-24}{5}, \frac{36}{5}\right) \qquad 3)\left(\frac{24}{5}, \frac{-36}{5}\right) \qquad 4)\left(\frac{24}{5}, \frac{36}{5}\right)$ **HINT:** $\overline{a} \times \overline{b} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 3 & -5 \\ m & n & 12 \end{vmatrix} = \overline{i} [36+5n] - \overline{j} [24+5m] + \overline{k} [2n-3m] = \overline{0}$ 32. If $|\overline{a}| = 3$, $|\overline{b}| = 4$ and the angle between \overline{a} and \overline{b} is 120°, then $|4\overline{a}+3\overline{b}|$ is equal to 1)25 3) 13 2)7 4) 12 **KEY: 4 HINT:** $|4\overline{a}+3\overline{b}|^2 = 16\overline{a}^2 + 9\overline{b}^2 + 24|\overline{a}||\overline{b}|\cos(120^\circ)$ If $\overline{a}, \overline{b}, \overline{c}$ are non-zero vectors such that $(\overline{a} \times \overline{b}) \times \overline{c} = \frac{1}{2} |\overline{b}| |\overline{c}| \overline{a}, \overline{c} \perp \overline{a}$ and θ is the angle between 33. the vectors $\overline{b}, \overline{c}$ then $\sin \theta =$

1) $\frac{2\sqrt{2}}{3}$ 2) $\frac{1}{3}$ 3) $\frac{\sqrt{2}}{3}$ 4) $\frac{2}{3}$

KEY: 1

Page 8 of 36

HINT:

$$(\overline{a}.\overline{c})\overline{b} - (\overline{b}.\overline{c})\overline{a} = \frac{1}{3} |\overline{b}| |\overline{c}| \overline{a}$$
$$\Rightarrow 0 - (\overline{b}.\overline{c})\overline{a} = \frac{1}{3} |\overline{b}| |\overline{c}| \overline{a}$$
$$\Rightarrow - |\overline{b}| |\overline{c}| \cos\theta = \frac{1}{3} |\overline{b}| |\overline{c}|$$
$$\Rightarrow \cos\theta = -\frac{1}{3}$$
$$\sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}.$$

34. If $a(\overline{\alpha} \times \overline{\beta}) + b(\overline{\beta} \times \overline{\gamma}) + c(\overline{\gamma} \times \overline{\alpha}) = \overline{0}$ and atleast one of the scalars a, b, c is non-zero, then the vectors $\overline{\alpha}, \overline{\beta}, \overline{\gamma}$ are

1) Parallel 2) non coplanar 3) coplanar 4) mutually perpendicular **KEY: 3 HINT:** $\bar{\alpha} \times \bar{\beta}, \bar{\beta} \times \bar{\gamma}, \bar{\gamma} \times \bar{\alpha}$ ae coplanar $[\bar{\alpha} \times \bar{\beta}, \bar{\beta} \times \bar{\gamma}, \bar{\gamma} \times \bar{\alpha}] = 0$ $\Rightarrow [\bar{\alpha}, \bar{\beta}, \bar{\gamma}]^2 = 0$ $\Rightarrow [\bar{\alpha}, \bar{\beta}, \bar{\gamma}] = 0$

35. If the mean of 10 observations is 50 and the sum of the squares of the deviations of the observations from the mean is 250, then the coefficient of variation of those observations is

3) 10

1) 25 **KEY: 3**

HINT: $\overline{x} = 50$

$$\sum (x_i^2 - \overline{x})^2 = 250 \qquad \left[\sigma^2 = \frac{1}{10} \times 250 = 25 \right]$$

$$C.V = \frac{S.D}{\overline{x}} \times 100 = \frac{5}{50} \times 100 = 10.$$

36. The variance of the first 50 even natural members is

2) 50

1)
$$\frac{833}{4}$$
 2) 833 3) 437 4) $\frac{437}{4}$
KEY: 2
HINT:
 $\overline{x} = \frac{2+4+...+100}{50}$
 $= = \frac{50(51)}{50} = 51$
 $\sigma^2 = \frac{1}{50} [2^2 + 4^2 ++100^2] - (51)^2$
 $= 833$

Page 9 of 36

http://www.myengg.com/engg/info/category/eamcet/

4) 5

...

37. 3 out of 6 vertices of a regular hexagon are chosen at a time at random. The probability that the triangle formed with these three vertices is an equilateral triangle is

1)
$$\frac{1}{2}$$
 2) $\frac{1}{5}$ 3) $\frac{1}{10}$ 4) $\frac{1}{20}$
KEY: 3
HINT: $n(s) = {}^{6}C_{3}$
 $n(A) = 2$
 $P(A) = \frac{2}{20} = \frac{1}{10}$
38. A speaks truth in 75% of the cases and B in 80% of the cases. Then the

38. A speaks truth in 75% of the cases and B in 80% of the cases. Then the probability that their statements about an incident do not match is

1)
$$\frac{7}{20}$$
 2) $\frac{3}{20}$ 3) $\frac{2}{7}$ 4) $\frac{5}{7}$
KEY: 1
HINT: $P(A) = \frac{75}{100} P(B) = \frac{80}{100}$
 $R.P = P(A)P(\overline{B}) + P(\overline{A})P(B)$
 $= \frac{3}{4} \cdot \frac{1}{5} + \frac{1}{4} \cdot \frac{4}{5} = \frac{7}{20}$

39. If the mean and variance of a binomial distribution are 4 and 2 respectively, then the probability of 2 successes of that binomial variate X, is

1)
$$\frac{1}{2}$$
 2) $\frac{219}{256}$ 3) $\frac{37}{256}$ 4) $\frac{7}{64}$
KEY: 4
HINT: np = 4, npq = 2
then n = 8, p = 1/2, q = 1/2
p(x = 2) = ${}^{8}C_{2} (1/2)^{8} = 7/64$

40. In a city 10 accidents take place in a span of 50 days. Assuming that the number of accidents follow the Poisson distribution, the probability that three or more accidents occur in a day, is

1)
$$\sum_{k=3}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!}, \lambda = 0.2$$
 2) $\sum_{k=3}^{\infty} \frac{e^{\lambda} \lambda^k}{k}, \lambda = 0.2$ 3) $1 - \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!}, \lambda = 0.2$ 4) $\sum_{k=0}^{3} \frac{e^{-\lambda} \lambda^k}{k!}, \lambda = 0.2$

KEY: 1

HINT:
$$\lambda = \frac{10}{50} = 0.2$$

 $P(x \ge 3) = \sum_{k=3}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!}, \lambda = 0.2$

41. Equation of the locus of the centroid of the triangle whose vertices are $(a\cos k, a\sin k)$, $(b\sin k, -b\cos k)$ and (1,0), where k is a parameter, is

1) $(1-3x)^2 + 9y^2 = a^2 + b^2$ 3) $(3x+1)^2 + (3y)^2 = a^2 + b^2$ 4) $(3x+1)^2 + (3y)^2 = 3a^2 + 3b^2$

KEY:1

Page 10 of 36

Hint :
$$=(x,y)=\left(\frac{a \cos k + b \sin k + 1}{3}, \frac{a \sin k - b \cos k + 0}{3}\right)$$

 $\Rightarrow (3x-1)^2 + (3y)^2 = a^2 + b^2$
42. If the coordinate axes are rotated through an angle $\frac{\pi}{6}$ about the origin, then the transformed
equation of $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$ is
1) $\sqrt{3}y^2 + xy = 0$ 2) $x^2 - y^2 = 0$ 3) $\sqrt{3}y^2 - xy = 0$ 4) $\sqrt{3}y^2 - 2xy = 0$
KEY :3
Hint : $x = x \cos \theta - y \sin \theta$, $y = x \sin \theta + y \cos \theta$
 $x = \frac{\sqrt{3}x - y}{2}$, $y = \frac{x + \sqrt{3}y}{2}$
43. If the lines $x + 3y - 9 = 0$, $4x + by - 2 = 0$, and $2x - y - 4 = 0$ are concurrent, then the equation of
the line passing through the point (b, 0) and concurrent with the given lines, is
1) $2x + y + 10 = 0$ 2) $4x - 7y + 20 = 0$ 3) $x - y + 5 = 0$ 4) $x - 4y + 5 = 0$
KEV :4
Hint : Point of intersection of $x + 3y - 9 = 0$ and $2x - y - 4 = 0$ is (3,2) lies on $4x + by - 2 = 0 \Rightarrow b = -5$.
 \therefore req line is $x - 4y + 5 = 0$
44. The midpoint of the line segment joining the centroid and the orthocentre of the triangle whose
vertices are $(a, b), (a, c)$ and (d, c) is
1) $\left(\frac{5a + d}{6}, \frac{b + 2c}{3}\right)$, orthocenter '0'= (a, c)
 \therefore req point $= \frac{O + 2}{2}$
45. The distance from the origin to the image of (1,1) with respect to the line $x + y + 5 = 0$ is
1) $7\sqrt{2}$ 2) $3\sqrt{2}$ 3) $6\sqrt{2}$ 4) $4\sqrt{2}$
KEY :3
Hint : lmage of (1,1) w.r. to $x + y + 5 = 0$ is $P = (-6, -6)$
 \therefore $OP = 6\sqrt{2}$.
46. The equation of the pair of lines joining the origin to the points of intersection of $x^2 + y^2 = 9$
and $x + y = 3$, is
1) $x^2 + (3 - y)^2 = 9$ 2) $(3 + y)^2 + y^2 = 9$ 3) $x^2 - y^2 = 9$ 4) $xy = 0$
KEY :4
Hint : Homegenising $\frac{x^2 + y^2 = 9}{3}$ with $x + y = 3$
 $\Rightarrow x^2 + y^2 = 9\left(\frac{x + y}{3}\right)^2 \Rightarrow xy = 0$
47. The orthocenter of the triangle formed by the lines $x + y = 1$ and $2y^2 - xy - 6x^2 = 0$ is
1) $\left(\frac{4}{3}, \frac{4}{3}\right)$ 2) $\left(\frac{2}{3}, \frac{2}{3}\right$ 3) $\left(\frac{2}{3}, \frac{-2}{3}\right$ 4) $\left(\frac{4}{3}, \frac{-4}{3}\right)$

Page 11 of 36

KEY :1

KeV :1
Hint : Lee passing through origin and perpendicular to x+y=1 is x-y=0 (altitude)
Given pair of lines are
$$(2x-y)(3x+2y)=0$$

Point of intersection of $2x-y=0, x+y=1$ is $\left(\frac{1}{3}, \frac{2}{3}\right)$.
Another altitude $=y-\frac{2}{3}=\frac{2}{3}\left(x-\frac{1}{3}\right)\Rightarrow 6x-9y+4=0$
 \therefore orthocentre= *POI.of* $x-y=0, 6x-9y+4=0\Rightarrow O=\left(\frac{4}{3}, \frac{4}{3}\right)$
48. Let *L* be the line joining the origin to the point of intersection of the lines represented by
 $2x^2-3xy-2y^2+10x+5y=0$. If *L* is perpendicular to the line $kx+y+3=0$, then $k=1$
 $1)\frac{1}{2}$ $2)\frac{-1}{2}$ $3)-1$ $4)\frac{1}{3}$
KEY :2
Hint : P.O.I. of given pair = (-1,2) = P
Slope of $\overline{OP} = \frac{2-0}{-1-0} = -2$
 $m_1 \times m_2 \Rightarrow -2x-k=-1\Rightarrow K = \frac{-1}{2}$
49. A circle *S* = 0 with radius $\sqrt{2}$ touches the line $x+y-z=0$ at (1,1.) Then the length of the
tangent drawn from the point (1,2.) to *S* = 0 is
 $1)1$ $2)\sqrt{2}$ $3)\sqrt{3}$ $4)2$
KEY :3
Hint : Given question is wrong. Given $x+y-z=0$
Instead of $x+y-2=0$
Solope of $(2x-y)(-1,2) = 0$ the eircle $x^2+y^2-2x-2y-3=0$ meets the circle at another
point *Q*. Then the coordinates of *Q* are
 $1)(3,0)$ $2)(-3,0)$ $3)(2,0)$ $4)(-2,0)$
KEY :1
Hint : Centre $=\frac{P+Q}{2} \Rightarrow (1,1)\frac{(-1,2)+Q}{2}$
 $Q = (3,0)$ (other end of diameter)
51. If the lines $kx+2y-4=0$ and $5x-2y-4=0$ are conjugate with respect to the circle
 $x^2+y^2-2x-2y+1=0$, then $k=$
 $1)(0$ $2)1$ $3)2$ $4)3$
KEY :2
Hint : $r^2(l_1l_2+m_1m_2)=(l_1g+m_1f-n_1)(l_2g+m_2f-n_2)$
52. The angle between the tangents drawn from the origin to the circle $x^2+y^2+4x-6y+4=0$ is
 $1) \tan^{-1}\left(\frac{5}{3}\right)$ $2) \tan^{-1}\left(\frac{5}{12}\right)$ $3) \tan^{-1}\left(\frac{12}{5}\right)$ $4) \tan^{-1}\left(\frac{13}{5}\right)$
KEY :3

Page 12 of 36

Hint : $Tan\left(\frac{\theta}{2}\right) = \frac{r}{\sqrt{S_{12}}}$ If the angle between the circles $x^{2} + y^{2} - 2x - 4y + c = 0$ and $x^{2} + y^{2} - 4x - 2y + 4 = 0$ is 60° , then 53. c is equal to 2) $\frac{6\pm\sqrt{5}}{2}$ 3) $\frac{9\pm\sqrt{5}}{2}$ 4) $\frac{7\pm\sqrt{5}}{2}$ 1) $\frac{3\pm\sqrt{5}}{2}$ **KEY** :4 Hint : $\cos\theta = \frac{d^2 - r_1^2 - r_2^2}{2r_1r_2}$ A circle S cuts three circles $x^2 + y^2 - 4x - 2y + 4 = 0$, $x^2 + y^2 - 2x - 4y + 1 = 0$, and 54. $x^2 + y^2 + 4x + 2y + 1 = 0$ orthogonally. Then the radius of S is 1) $\sqrt{\frac{29}{2}}$ 2) $\sqrt{\frac{28}{11}}$ EVA (3) $\sqrt{\frac{29}{7}}$ 4) $\sqrt{\frac{29}{5}}$ **KEY** :1 : Find the Radical centre and then find $\sqrt{S_{11}}$ Hint The distance between the vertex and the focus of the parabola $x^2 - 2x + 3y - 2 = 0$ is 55. 2) $\frac{3}{4}$ 1) $\frac{4}{5}$ 3) $\frac{1}{2}$ 4) $\frac{5}{6}$ KEY :2 Hint : $(x-1)^2 = -3(y-1) \Rightarrow 4a = -3 \Rightarrow a = -3/4$ SA = |a| = 3/4If (x_1, y_1) and (x_2, y_2) are the end points of a focal chord of the parabola $y^2 = 5x$, then 56. $4x_1x_2 + y_1y_2 =$ 4) $\frac{5}{4}$ 1)252) 5 3)0**KEY** :3 Hint : $t_1 t_2 = -1 \Longrightarrow x_1 x_2 a^2, y_1 y_2 = -4a^2$ $\therefore 4x_1x_2 + y_1y_2 = 0$ The distance between the focii of the ellipse $x = 3\cos\theta$, $y = 4\sin\theta$ is 57. 1) $2\sqrt{7}$ 2) $7\sqrt{2}$ 3) $\sqrt{7}$ 4) 3√7 KEY :1 $\frac{x^2}{9} + \frac{y^2}{16} = 1 \Longrightarrow SS^1 = 2bc = 2\sqrt{7} \frac{x^2}{9} + \frac{y^2}{16} = 1$ Hint The equation of the latus recta of the ellipse $9x^2 + 25y^2 - 36x + 50y - 164 = 0$ are 58. 2) x-6=0, x+2=0 3) x+6=0, x-2=01) x-4=0, x+2=0x + 4 = 0, x + 5 = 0KEY :2 : Given ellipse is $\frac{(x-2)^2}{25} + \frac{(y+1)^2}{9} = 1$ Hint $x = h \pm ae \Longrightarrow x - 6 = 0, x + 2 = 0$ $x = h \pm ae$

Page 13 of 36

59.	The values of the <i>m</i> for which	the line $y = mx + mx$		nt to the hyperbola			
	$4x^2 - 9y^2 = 36$ is	,	-				
	1) $\pm \frac{2}{3}$ 2) \pm	$=\frac{2\sqrt{2}}{3}$	3) $\pm \frac{8}{9}$	4) $\pm \frac{4\sqrt{2}}{3}$			
KEY	:2	5	3	5			
Hint	: $c^2 = a^2 m^2 - 6^2 \implies m = \pm \frac{2\sqrt{2}}{3}$.						
60.	The harmonic conjugate of (2,3,4) with respect to th	ne points (3,-2,2),(6,	-17, -4) is			
	$1)\left(\frac{1}{2},\frac{1}{3},\frac{1}{4}\right) \qquad \qquad 2)\left($	$\left(\frac{18}{5}, -5, \frac{4}{5}\right)$	$3)\left(\frac{-18}{5},\frac{5}{4},\frac{4}{5}\right)$	$4)\left(\frac{18}{5},-5,\frac{-4}{5}\right)$			
KEY		. –					
Hint	: $P = (2,3,4), A = (3,-2,2), B = (6,-2,2), B = (6,-2,2),$	–17,–4)					
	'P' divides \overline{AB} in the ratio = 1:-4	$\Rightarrow'Q'$ divides \overline{AB} is	in the ratio 1:4 $Q = \frac{B}{2}$	$\frac{+4A}{5}$			
61 .	If a line makes angles α, β, γ and	δ with the four di	agonals of a cube, the	en the value of			
	$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta$ is						
	1) $\frac{4}{3}$ 2) $\frac{8}{3}$ 3) $\frac{7}{3}$	$(4)\frac{5}{3}$					
KEY	5 5 5						
	w.k.t $\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta$	$\gamma + \cos^2 \delta = \frac{4}{2}$					
HINT		5					
	$\therefore \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = 4 - \frac{4}{3} = \frac{8}{3}$						
62 .	If the plane $56x + 4y + 9z = 2016$ r	neets the coordinate	e a <mark>xe</mark> s in <i>A</i> , <i>B</i> , <i>C</i> then	the centroid of the			
	triangle ABC is	(12,1(2,112))					
	1) (12,168,224)	2) (12,168,112)					
	3) $\left(12,168,\frac{224}{3}\right)$	4) $\left(12, -168, \frac{224}{3}\right)$					
KEY	$\begin{array}{c} \vdots 3 \\ \hline \end{array}$						
	EY: 3 IINT : Given plane is $56x + 4y + 9z = 2016$						
	Convert to $\Rightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$			-)			
			$, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + y_3}{3}$				
63.	The value(s) of <i>x</i> for which the fu	nction $f(x) = \int_{-1}^{1} f(x) dx$	1-x, $x < 1x > (2 x) 1 \le x \le 2$	fails to be			
		$\int (x) = \int (1 - x)^{1-1} dx$	$x (2 - x)$, $1 \le x \le 2$ 3 - x , $x > 2$				
	continuous is (are)						
KEY	(1) 1 (2) 2	3) 3	4) All real	numbers			
HINT							
	$R.H.L = x \rightarrow 2^+ f(x) = 1$	L H	$I.L = x \stackrel{Lt}{\to} 2^{-} f(x) = 0$)			
	$L.H.L \neq R.H.L$	2					
				$D_{\text{reg}} 14 \text{ of } 36$			

Page 14 of 36

64.
$$x \to 0 \frac{6^x - 3^x - 2^x + 1}{x^2} =$$

1) $(\log_x 2) \log_x 3$ 2) $\log_x 5$
3) $\log_x 6$ 4) 0
KEY: 1
HINT: $x \to 0 \frac{3^x (2^x - 1) - 1(2^x - 1)}{x^2} = x \to 0 \frac{(2^x - 1)}{x} \frac{(3^x - 1)}{x} = \log 2 \cdot \log 3$
65. Define $f(x) = \begin{cases} x^2 + bx + c \ , x < 1 \ x > 1 \end{cases}$ If $f(x)$ is differentiable at $x = 1$, then $(b - c) =$
1) -2 2) 0 3) 1 4) 2
KEY: 1
HINT: R.H.D = 1, $LH.D = \frac{Lt}{x + 1} \frac{(x^2 + bx + c) - 1}{x - 1} = 1$
 $2 + Lt} \frac{b}{x + 1} + \frac{b}{x - 1} = 1$
 $2 + Lt} \frac{b}{x + 1} + \frac{b}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x - 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{x + 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{y - 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{y - 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $2 + Lt \frac{b}{y - 1} + \frac{b}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} + \frac{c}{x - 1} = 1$
 $4 + Lt \frac{c}{x - 1} + \frac{$

Page 15 of 36

$$I = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = 2 \int_{1}^{1} \frac{1}{\sqrt{3}} = 3 \int_{1}^{1} \frac{1}{2} = 4 \int_{1}^{1} \sqrt{3}$$
KEY: 2
HINT:

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$
Put

$$A = B = \frac{\pi}{6}$$

$$I = A + B = \frac{\pi}{3}$$
Put

$$A = B = \frac{\pi}{6}$$
Put

$$A = A + 2$$
Pu

Page 16 of 36

www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana RARAYANA JUNIOR COLLEGE

KEY: 1

$$x+1 = \tan \theta$$
HINT:
74. If $\int \log(a^2 + x^2) dx = h(x) + c$, then $h(x) =$
1) $x \log(x^2 + x^2) + 2 \tan^{-1}(\frac{x}{a})$
2) $x^2(x^2 + x^2) + 2 \tan^{-1}(\frac{x}{a})$
3) $x \log(a^2 + x^2) - 2a \tan^{-1}(\frac{x}{a})$
4) $x^2(a^2 + x^2) + 2x - a^2 \tan^{-1}(\frac{x}{a})$

KEY: 3

HINT: Integration by parts

75. For
$$x > 0$$
, if $\int (\log x)^5 dx = x \Big[A (\log x)^5 + B (\log x)^4 + C (\log x)^3 + D (\log x)^2 + E (\log x) + F \Big] +$
constant then $A + B + C + D + E + F =$
1) -44 2) -42 3) -40 4) -36

- HINT: Reduction formulae
- Reduction formulae The area included between the parabola $y = \frac{x^2}{4a}$ and the curve $y = \frac{8a^3}{(x^2 + 4a^2)}$ is 76.

1)
$$a^{2}\left(2\pi + \frac{2}{3}\right)$$
 2) $a^{2}\left(2\pi - \frac{8}{3}\right)$ 3) $a^{2}\left(\pi + \frac{4}{3}\right)$ 4) $a^{2}\left(2\pi - \frac{4}{3}\right)$

KEY: 4

HINT: P.I. of the x-coordinates -2a and 2a

Required area

$$A = \int_{-2a}^{2a} \left(\frac{8a^3}{x^2 + 4a^2} - \frac{x^2}{4a} \right) dx$$

$$= 2 \int_{0}^{2a} \left(\frac{8a^3}{x^2 + 4a^2} - \frac{x^2}{4a} \right) dx$$

$$= a^2 \left(2\pi - \frac{4}{3} \right)$$

By the definition of the definite integral, the value of 77.

$$n \xrightarrow{Lim} \infty \left(\frac{1}{\sqrt{n^2 - 1}} + \frac{1}{\sqrt{n^2 - 2^2}} + \dots + \frac{1}{\sqrt{n^2 - (n - 1)^2}} \right) \text{ is equal to}$$

1) π 2) $\frac{\pi}{2}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{6}$

KEY: 2

HINT: $Lt \sum_{x \to \infty}^{(n-1)} \frac{1}{\sqrt{n^2 - r^2}}$

Page 17 of 36

$$= \int_{x \to \infty}^{\pi/4} \int_{r=1}^{\pi/4} \frac{1}{n} \frac{1}{\sqrt{1 - \left(\frac{r}{n}\right)^2}} = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \left(\sin^{-1} x\right)_0^1 = \frac{\pi}{2}$$
78.
$$\int_{-\pi/4}^{\pi/4} \left\{ \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \right] dx =$$
1)
$$\frac{8\pi\sqrt{3}}{5}$$
2)
$$\frac{2\pi\sqrt{3}}{9}$$
3)
$$\frac{4\pi^2\sqrt{3}}{9}$$
4)
$$\frac{\pi^2}{6\sqrt{3}}$$
KEY: 4
HINT:
$$\int_{-\pi/4}^{\pi/4} \frac{x}{2 - \cos 2x} dx + \frac{\pi}{4} \int_{-\pi/4}^{\pi/4} \frac{1}{2 - \cos 2x} dx$$

$$= 0 + \frac{\pi}{2} \int_0^{\pi/4} \frac{1}{2 - \cos 2x} dx$$
put $\tan x = t$ and then integrate
$$= \frac{\pi^2}{6\sqrt{3}} \left(x - e^{\tan^{-1}y}\right) \frac{dy}{dx} = -(1 + y^2)$$
79. The solution of the differential equation $(1 + y^2) + \left(x - e^{\tan^{-1}y}\right) \frac{dy}{dx} = 0$, is
1) $x e^{\tan^{-1}y} = \tan^{-1}y + c$
3) $2x e^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$
KEY: 3
HINT:
$$\left(x - e^{\tan^{-1}y}\right) \frac{dy}{dx} = -(1 + y^2)$$

$$-\left(\frac{x - e^{\tan^{-1}y}}{1 + y^2}\right) = \frac{dx}{dy}$$

$$\frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{e^{\tan^{-1}y}}{1 + y^2}$$
THE NARAMA GROUP
I.F. $= e^{\tan^{-1}y}$
G.S = $x e^{\tan^{-1}y} = \int_{-1}^{2 \tan^{-1}y} e^{\tan^{-1}y} dy$
put $\tan^{-1} y = t$ and then integrate.
$$\Rightarrow 2x e^{\tan^{-1}y} = e^{2\tan^{-1}y} + c$$

80. The solution of the differential equation $(2x-4y+3)\frac{dy}{dx} + (x-2y+1) = 0$ is 1) $\log((2x-4y)+3) = x-2y+c$ 2) $\log[2(2x-4y)+3] = 2(x-2y)+c$ 3) $\log[2(x-2y)+5] = 2(x+y)+c$ 4) $\log[4(x-2y)+5] = 4(x+2y)+c$

KEY: 4

HINT:
$$\frac{dy}{dx} = \frac{-\lfloor (x-2y)+1 \rfloor}{2(x-2y)+3} \qquad \text{put } x-2y = t \implies \frac{dy}{dx} = \frac{1}{2} \left(1 + \frac{dt}{dx}\right)$$

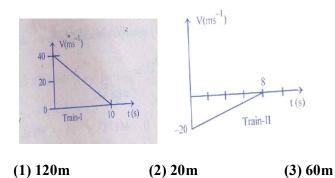
Page 18 of 36

www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana RARAVANA JUNIOR COLLEGE

$$\Rightarrow \frac{1}{2} \left(1 + \frac{dt}{dx} \right) = \frac{-(t+1)}{2t+3}$$

$$\Rightarrow \int \frac{2t+3}{4t+5} dt = \int dx$$

$$\int \left[\frac{1}{2} + \frac{1}{2t+3} \right] dt = \int dx$$
And then integrate and substitute $t = x - 2y$


$$\Rightarrow \log \left[4(x-2y)+5 \right] = 4(x+2y)+c$$
PHYSICS
81. Match the list-I with list-II
List-I
A) Boltzmann constant
B) Coefficient of viscosity
II) $ML^{-1}T^{-1}$
() Water equivalent
II) $MLT^{-3}K^{-1}$
II) $MLT^{-2}K^{-1}$
() A-III; B-I; C-II; D-IV
(3) A-IV; B-II; C-I; D-III
KEY: 3
HINT:
Boltzmann's constant
$$K = \frac{2E}{3T}$$

$$K = \frac{ML^{2}T^{-2}}{K} = ML^{2}T^{-2}K^{-1}$$
Coefficient of viscosity $\eta = \frac{F}{A\frac{dv}{dx}}$

$$\eta = \frac{F}{A\frac{dv}{dx}} = \frac{MLT^{-2}}{L^{2}T^{-1}} = ML^{-1}T^{-1}$$
March 2000 ACCOUNT AND A COUNT AND A COUNT AND A COUNT A COUNT

81.

82. Two trains, which are moving along different tracks in opposite directions are put on the same track by mistake. On noticing the mistake, when the trains are 300 m apart the drivers start slowing down the trains. The graphs given below show decrease in their velocities as function of time. The separation between the trains when both have stopped is

(4) 280m

Page 19 of 36

KEY: 2

HINT: From given graph retardation of two trains are $a_1 = 4ms^{-2}$, $a_2 = 2.5ms^{-2}$ (Slope of given graphs) Stopping distances $x_1 = \frac{40 \times 40}{2 \times 4} = 200m$ $x_2 = \frac{20 \times 20}{2 \times 2.5} = 80m$ $d = D - (x_1 + x_2)$ = 300 - (200 + 80) = 20m

83. A point object moves along an arc of a circle of radius 'R'. Its velocity depends upon the distance covered 'S' as $V = K\sqrt{S}$ where 'K' is a constant. If ' θ ' is the angle between the total acceleration and tangential acceleration, then

(1)
$$\tan \theta = \sqrt{\frac{S}{R}}$$
 (2) $\tan \theta = \sqrt{\frac{S}{2R}}$ (3) $\tan \theta = \frac{S}{2R}$ (4) $\tan \theta = \frac{2S}{R}$

KEY: 4 HINT:

$$V = K\sqrt{S}$$

$$a_r = \frac{v^2}{R} = \frac{K^2 S}{R}$$

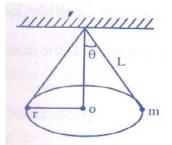
$$a_t = \frac{dv}{dt} = \frac{d}{dt} (K\sqrt{S}) = \frac{K^2}{2}$$

$$\tan \theta = \frac{a_r}{a_t} = \frac{2S}{R}$$

84. A body projected from the ground reaches a point 'X' in its path after 3 seconds and from there it reaches the ground after further 6 seconds. The vertical distance of the point 'X' from the ground is

(acceleration due to gravity = $10ms^{-2}$) (1) 30m (2) 60m (3) 80m (4) 90m

KEY: 4


HINT:

Let u be velocity of projection

Time of flight
$$T = \frac{2u}{g} = 9 \sec u$$

 $u = \frac{9 \times 10}{2} = 45m/s$
 $x = ut - \frac{1}{2}gt^2$
 $= 45(3) - \frac{1}{2}(10)9$
 $= 135 - 45 = 90m$

Page 20 of 36

85. A particle of mass 'm' is suspended from a ceiling through a string of length 'L'. If the particle moves in a horizontal circle of radius 'r' as shown in the figure, then the speed of the particle is

(1)
$$r\sqrt{\frac{g}{\sqrt{L^2-r^2}}}$$
 (2) $g\sqrt{\frac{r}{\sqrt{L^2-r^2}}}$ (3) $r\sqrt{\frac{g}{L^2-r^2}}$ (4) $g\sqrt{\frac{r}{L^2-r^2}}$

KEY: 1 HINT:

According to dimensional analysis first option is correct

$$r\sqrt{\frac{g}{\sqrt{L^2 - r^2}}} = L\sqrt{\frac{LT^{-2}}{L}} = LT^{-1} = \text{velocity}$$

86. A particle is placed at rest inside a hollow hemisphere of radius 'R'. The co-efficient of friction between the particle and the hemisphere is $\mu = \frac{1}{\sqrt{3}}$. The maximum height upto which the

particle can remain stationary is
(1)
$$\frac{R}{2}$$
 (2) $\left(1 - \frac{\sqrt{3}}{2}\right)R$ (3) $\frac{\sqrt{3}}{2}R$ (4) $\frac{3R}{8}$

KEY: 2

HINT:

$$h = R \left[1 - \frac{1}{\sqrt{\mu^2 + 1}} \right]$$
$$= R \left[1 - \frac{1}{\sqrt{\frac{1}{3} + 1}} \right]$$
$$= R \left[1 - \frac{\sqrt{3}}{2} \right]$$

87. A 1kg ball moving with a speed of $6ms^{-1}$ collides head-on with a 0.5 kg ball moving in the opposite direction with a speed of $9ms^{-1}$. If the co-efficient of restitution is $\frac{1}{3}$, the energy lost in

the collision is (1) 303.4J (2) 66.7J (3) 33.3J (4) 67.8JKEY: 3 HINT: $m_1 = 1kg$ $m_2 = 0.5kg$

Page 21 of 36

$$u_{1} = 6m/s$$

$$u_{2} = 9m/s$$

$$U = \frac{1}{2} \frac{m_{1}m_{2}}{m_{1} + m_{2}} (u_{1} + u_{2})^{2} (1 - e^{2})$$

= 33.3J

88. A ball is thrown vertically down from a height of 40 m from the ground with an initial velocity 'v'. The ball hits the ground, loses $\frac{1^{rd}}{3}$ of its total mechanical energy and rebounds back to the same height. If the acceleration due to gravity is $10ms^{-2}$, the value of 'v' is

(1)
$$5 m s^{-1}$$
 (2) $10 m s^{-1}$ (3) $15 m s^{-1}$ (4) $20 m s^{-1}$

KEY: 4

HINT: $KE_{i} = mgh + \frac{1}{2}mv^{2}$ $KE_{i} = \left(400 + \frac{1}{2}v^{2}\right)m$ $KE_{f} = \frac{2}{3}\left[400m + \frac{1}{2}mv^{2}\right] = m \times 10 \times 40$ $\frac{2}{3}\left[400 + \frac{v^{2}}{2}\right] = 400$ $400 + \frac{v^{2}}{2} = 600$ $\frac{v^{2}}{2} = 200$ v = 20m/s

- 89. Three identical uniform thin metal rods from the three sides of an equilateral triangle. If the moment of inertia of the system of these three rods about an axis passing through the centroid of the triangle and perpendicular to the plane of the triangle is 'n' times the moment of inertia of one rod separately about an axis passing through the centre of the rod and perpendicular to its length, the value of 'n' is
 - (1) 3 (2) 6 (3) 9 (4) 12

KEY: 2 HINT:

$$\tan 30^\circ = \frac{x}{\frac{a}{2}}$$
$$x = \frac{a}{2\sqrt{3}} = \frac{l}{2\sqrt{3}}$$
$$I = \frac{ml^2}{12} + \frac{ml^2}{4\times 3} = \frac{ml^2}{6}$$
$$I_{net} = \frac{3ml^2}{6} = \frac{ml^2}{2}$$

Page 22 of 36

$$I_{net} = n \frac{ml^2}{12}$$
$$\frac{ml^2}{2} = n \frac{ml^2}{12}$$
$$n = 6$$

90. Two smooth and similar right angled prisms are arranged on a smooth horizontal plane as shown in the figure. The lower prism has a mass '3' times the upper prism. The prisms are held in an initial position as shown and are then released. As the upper prism touches the horizontal plane, the distance moved by the lower prism is

(1)
$$a-b$$

(2) $\frac{a-b}{3}$
(3) $\frac{b-a}{2}$
(4) $\frac{a-b}{4}$
KEY: 4
HINT:
 $x = \frac{ml\cos\theta}{m_1 + m_2}$
 $x = \frac{ml\cos\theta}{m_1 + m_2} = \frac{ml\cos\theta}{m + 3m}$
Relative displacement $= \frac{a-b}{4}$

91. A particle is executing simple harmonic motion with an amplitude of 2m. The difference in the magnitudes of its maximum acceleration and maximum velocity is 4. The time period of its oscillation and its velocity when it is 1m away from the mean position are respectively.

(1)
$$2s, 2\sqrt{3}ms^{-1}$$
 (2) $\frac{7}{22}s, 4\sqrt{3}ms^{-1}$ (3) $\frac{22}{7}s, 2\sqrt{3}ms^{-1}$ (4) $\frac{44}{7}s, 4\sqrt{3}ms^{-1}$

SOL:
$$Aw^2 - Aw = 4$$

 $w^2 - w = \frac{4}{2} = 2$
 $w[w-1] = 2, \implies w = 2$
 $V = w\sqrt{A^2 - \frac{A^2}{4}}$
 $V = w\sqrt{\frac{3A^2}{4}} = w\sqrt{3} \implies V = 2\sqrt{3} \implies T = \frac{2\pi}{w} = \frac{2\pi}{2} = \pi$

Page 23 of 36

92. Two bodies of masses 'm' and '9m' are placed at a distance 'r'. The gravitational potential at a point on the line joining then, where gravitational field is zero, is(G is universal gravitational constant)

(1)
$$\frac{-14GM}{r}$$
 (2) $\frac{-16GM}{r}$ (3) $\frac{-12GM}{r}$ (4) $\frac{-8GM}{r}$
KEY: 2
SOL: $x = \frac{r}{\sqrt{\frac{m_2}{m_1} + 1}}$
 $V = \frac{-Gm}{r} \cdot 4 - \frac{G.9m}{3r} \times 4$
 $V - \frac{4Gm}{r} - \frac{12Gm}{r}$ $-16\frac{Gm}{r}$
93. When a load of 80N is suspended from a string, its length is 101mm. If a load of 100N is suspended, its length is 102mm. If a load of 160N is suspended from it, then length of the string is (Assume the area of cross-section unchanged)
(1) 15.5 cm (2) 13.5 cm (3) 16.5 cm (4) 10.5 cm

SOL: $80 \propto 101 - l$ $100 \propto 102 - l$ $\frac{4}{5} - \frac{101 - l}{102 - l}$ 505 - 5l = 408 - 4l 505 - 408 = l l = 97mNow $160 \propto x - 97$ $\frac{100}{160} = \frac{5}{x - 97}$ 8 = x - 97 x = 105mmx = 10.5cm

94. A sphere of material of relative density 8 has a concentric spherical cavity and just sinks in water. If the radius of the sphere is 2cm, then the volume of the cavity is

(1)
$$\frac{76}{3}cm^3$$
 (2) $\frac{79}{3}cm^3$ (3) $\frac{82}{3}cm^3$ (4) $\frac{88}{3}cm^3$

KEY: 4

SOL:
$$\frac{4}{3}\pi r^3 x 1x g = V x 8x g$$

 $\frac{1}{6}x\pi x 2^3 = V \Rightarrow \qquad \frac{4\pi}{3} = V$
 $V_c = \frac{4}{3}\pi r^3 - \frac{4\pi}{3} \Rightarrow \frac{4}{3}\pi [2^3 - 1]$
 $\Rightarrow \frac{4}{3}x \frac{22}{7}x7 \Rightarrow \qquad \frac{88}{3}cm^3$

Page 24 of 36

A hunter fired a metallic bullet of mass 'm' kg from a gun towards an obstacle and it just melts 95. when it is stopped by the obstacle. The initial temperature of the bullet is 300K. If $\frac{1}{4}$ th of heat is absorbed by the obstacle, then the minimum velocity of the bullet is [Melting point of bullet = 600K, Specific heat of bullet = $0.03 \operatorname{calg}^{-1} {}^{o}C^{-1}$, Latent heat of fusion of bullet = $6 \operatorname{cal} g^{-1}$] (1) $410ms^{-1}$ (2) $260ms^{-1}$ (3) $460 m s^{-1}$ (4) $310ms^{-1}$ **KEY: 1** SOL: $\frac{3}{4}(K.E) = ms\Delta\theta + mL$ $\frac{3}{4}\left(\frac{1}{2}mv^2\right) = ms[600 - 300] + mL$ $\frac{3}{8}$ x $V^2 = 0.03$ x 4200 x 300 + 6 x 4200 \Rightarrow 900 x 42 + 25200 $V^2 = 63000 \,\mathrm{x} \frac{8}{2}$ $V^2 = 168000$ V = 409.87 m / s410ml 'M' kg of water at 't' C is divided into two parts so that one part of mass 'm' kg when 96. converted into ice at $0^{\circ}C$ would release enough heat to vapourise the other part, then $\frac{m}{M}$ is equal to [Specific heat of water = $1 cal g^{-1} °C^{-1}$, Latent heat of fusion of ice = $1 cal g^{-1} °C^{-1}$, Latent heat of steam = $540 \operatorname{cal} g^{-1}$ (2) $\frac{720-t}{640}$ (3) $\frac{640+t}{720}$ (4) $\frac{640-t}{720}$ (1) 640 - t**KEY: 4** SOL: $mc_w t + mL_{ice} = (M - m)C_w (100 - t) + (M - m)L_{steam}$ $\therefore \frac{m}{M} = \frac{640 - t}{720}$ 97. A diatomic gas ($\gamma = 1.4$) does 300J work when it is expanded isobarically. The heat given to the gas in this process is (2) 950 J (1) 1050 J (3) 600 J (4) 550 J **KEY: 1** SOL: $(dq) = nc_y dT + dw$ $P = n \frac{R}{rT} dT + dw$ $\frac{300}{\left(\frac{7}{5}-1\right)} + 300 \Longrightarrow \left(dq\right)_p = \frac{300}{0.4} + 300 = 1050 \text{ joule}$

Page 25 of 36

98. When the absolute temperature of the source of a Carnot heat engine is increased by 25% its efficiency increases 80%. The new efficiency of the engine is

(1) 12% (2) 24% (3) 48% (4) 36%
KEY: 4
SOL:
$$n = \frac{T_1 - T_2}{T_1}$$

 $100 = \frac{100 - T_2}{100}$
 $T_2 = 80k$
 $180 = \frac{125 - T_2}{125}$
 $n_2 = \frac{T_1 - T_2}{T_1} \times 100$
 $= \frac{125 - 80}{125} = \frac{45}{125} = \frac{9}{25} \times 100$
36%
99. A cylinder of fixed capacity 67.2 litres contains helium gas at STP. The amount of heat needed
to rise the temperature of the gas in the cylinder by 20° C is $(R = 8.31J mol^{-1}K^{-1})$
(1) 748 J (2) 374 J (3) 1000 J (4) 500 J
KEY: 1

- SOL: $(dq)_v = nc_v dT$ = $3 \times \frac{3R}{2} \times 20$ =90R 90 x 8.3 748 joule
- 100. For a certain organ pipe, three successive resonance frequencies are observed at 425, 595 and 765Hz, respectively. The length of the pipe is (speed of sound in air =340 ms⁻¹) (1) 0.5 m (2) 1 m (3) 1.5 m (4) 2 m

KEY: 4
SOL:
$$(2n+1)\frac{V}{4l} = 425$$

 $[2(n+1)+1]\frac{V}{4l} = 595$
 $(2n+3)\frac{V}{4l} = 595$
 $2\frac{V}{4l} = 170$

101. A student holds a tuning fork oscillating at 170 Hz. He walks towards a wall at a constant speed of $2ms^{-1}$. The beat frequency observed by the student between the tuning fork and its echo is (Velocity of sound == $342ms^{-1}$)

1) 2.5Hz 2) 3Hz 3)1Hz 4) 2Hz **KEY : 4** Hint : $\Delta n = \left(\frac{2u}{v-u}\right)_n$

Page 26 of 36

102. An infinitely long rod lies along the axis of a concave mirror of focal length 'f'. the nearer end of the rod is at a distance u, (u > f) from the mirror. It's image will have a length

1)
$$\frac{uf}{u+f}$$
 2) $\frac{uf}{u-f}$ 3) $\frac{f^2}{u+f}$ 4) $\frac{f^2}{u-f}$

KEY : 4

- Hint : Volume 1
- 103. In Yooung's double slit experiment, red light of wavelength 6000A is used and then nth bright fringe is obtained at a point 'P' on the screen. Keeping the same setting, the source of light is replaced by green light of wavelength 5000A and now $(n+1)^{th}$ bright fringe is obtained at the point P on the screen. The value of 'n' is 1) 4 2) 5 3) 6 4) 3

Hint : $n_1\lambda_1 = n_2\lambda_2$

- 104. Two charges each of charge +10c are kept on Y-axis at y=-a and y=+a respectively.
 - Another point charge \Box 20 c is placed at the origin and given a small displacement $x(x \ll a)$

along X-axis. The force acting on the point charge is (x and a are in metres, $\frac{1}{4} = 9 \times 10^9 Nm^2 C^{-2}$)

$$4\pi \in_{0}$$
1) $\frac{3.6x}{a^{2}}N$ 2) $\frac{2.4x^{2}}{a}N$ 3) $\frac{3.6x}{a^{3}}N$ 4) $\frac{4.8x}{a^{2}}N$

KEY : 3

- Hint : Conceptual
- 105. Three identical charges each $2\mu C$ lie at the verticles of a right angled triangle as shown the figure. Forces on the charge at B due to the charges at A and C respectively are F_1F_2 . The angle between their resultant force and F_2 .

1)
$$\tan^{-1}\left(\frac{9}{16}\right)$$
 2) $\tan^{-1}\left(\frac{9}{7}\right)$ 3) $\tan^{-1}\left(\frac{16}{9}\right)$ 4) $\tan^{-1}\left(\frac{7}{8}\right)$ POID

KEY : 3

Hint : $Tan\alpha = \frac{F_1}{F_2}$

106. The figure shows equipotential surfaces concentric at 'O'. The magnitude of electric at a distance 'r' meters from 'O' is

Page 27 of 36

KEY : 4

Hint : $E = -\frac{dv}{dr}$

- 107. A region contains a uniform electric field $\overline{E} = (10\hat{i} + 30\hat{j})Vm^{-1}$. A and B are two points int eh field at (1,2,0) and (2,1,3)m respectively. The work done when a charge of 0.8C moves from A to B in a parabolic path is
 - 1) 8J 2) 80J 3) 40J 4) 16J

KEY : 4

Hint : $W = vq \& V = -\int \overline{E}.\overline{dr}$

108. When a long straight uniform rod is connected across an ideal cell, the drift velocity of electron in it is v. if a uniform hole is made along the axis of the rod and the same battery is used, then the drift velocity electrons becomes.

1) v 2) > v 3) < v 4) zero

- Hint : Conceptual
- 109. In a meter bridge experiment, when a nichrome wire is in the right gap, the balancing length is 60cm. When the nichrome wire is uniformly stretched to increase its length by 20% and again connected in the right gap, the new balancing length is nearly.

1) 61 cm 2) 31 cm 3) 51 cm 40 41 cm

KEY : 3

Hint : $\frac{X}{R} = \frac{l_1}{100 - l_1}$

- 110. A loup of flexible conducting wire lies in a magnetic field of 2.0 T with its P perpendicular to the field. The length of the wire is 1m. When a current of 1.1A is pa through the loop. It opens into a circle, then the tension developed in the wire is
 - 1) 0.15N 2) 0.25N 3) 0.35N 4) 0.45N

KEY: 3

Hint : Conceptual

111. A charge q is spread uniformly over an isolated ring of radius 'R'. The ring is rotated about its natural axis with an angular velocity ' ω '. Magnetic dipole moment of the ring is

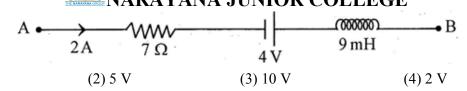
(1)
$$\frac{q\omega R^2}{2}$$
 (2) $\frac{q\omega R}{2}$ (3) $q\omega R^2$ (4) $\frac{q\omega}{2R}$

KEY: 1

$$M = iA = \frac{qv}{2\pi r} \times \pi r^2$$

112. A magnetic dipole of moment 2.5 Am^2 is free to rotate about a vertical axis passing through its centre. It is released from East-West direction. Its kinetic energy at the moment is takes North-South position is $(B_H = 3 \times 10^{-5} T)$.

(1) 50
$$\mu J$$
 (2) 100 μJ (3) 175 μJ (4) 75 μJ


KEY: 4

HINT: Gain in KE = loss in PE = MB

113. A branch of a circuit is shown in the figure. If current is decreasing at the rate of $10^3 As^{-1}$, the potential difference between A and B is

Page 28 of 36

www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana RARAYANA JUNIOR COLLEGE

KEY: 1

(1) 1 V

 $V_A - 2 \times 7 + 4 - 9 \times 10^{-3} (-10^3) = V_B$

HINT:

The natural frequency of an LC circuit is 125 kHz. When the capacitor is totally filled with a 114. dielectric material, the natural frequency decreases by 25 kHz. Dielectric constant of the material is nearly

(1) 3.33(2) 2.12(3) 1.56 (4) 1.91 **KEY: 3**

HINT: $\frac{f_1}{f_2} = \sqrt{K} \Rightarrow K = \left(\frac{f_1}{f_2}\right)^2$

- Choose the correct sequence of the radiation sources in increasing order of the wavelength of 115. electromagnetic waves produced by them.
 - (1) X-ray tube, Magnetron valve, Radio active source, Sodium lamp
 - (2) Radio active source, X-ray tube, Sodium lamp, Magnetron valve
 - (3) X-ray tube, Magnetron valve, Sodium lamp, Radio active source
 - (4) Magnetron valve, Sodium lamp, X-ray tube, Radio active source

KEY: 2

HINT: Conceptual

116. A photo sensitive metallic surface emits electrons when X-rays of wavelength ' λ ' fall on it. The de Broglie wavelength of the emitted electrons is (Neglect the work function of the surface, m is mass of the electron. H-Planck's constant, c-velocity of light)

(1)
$$\sqrt{\frac{2mc}{h\lambda}}$$
 (2) $\sqrt{\frac{h\lambda}{2mc}}$ (3) $\sqrt{\frac{mc}{h\lambda}}$ (4) $\sqrt{\frac{h\lambda}{mc}}$
KEY: 2
HINT: $\frac{hc}{\lambda} = KE = \frac{P^2}{2m} \Rightarrow P = \sqrt{\frac{2mhc}{\lambda}}$

HINT: λ

$$\lambda_m = \frac{h}{P} = \sqrt{\frac{h\lambda}{2m}}$$

- 117. An electron in a hydrogen atom undergoes a transition from a higher energy level to a lower energy level. The incorrect statement of the following is
 - (1) Kinetic energy of the electron increases
 - (2) Velocity of the electron increases
 - (3) Angular momentum of the electron remains constant
 - (4) Wavelength of de-Broglie wave associated with the motion of electron decreases

KEY: 3

HINT: Conceptual

- The radius of germanium (Ge) nuclide is measured be twice the radius of ${}_{4}^{9}Be$. The number of 118. nucleons in Ge will be
- (1)72(2)73(3)74(4)75**KEY: 1**

Page 29 of 36

HINT: $R \propto A^{1/3} \Rightarrow \frac{R_2}{R_1} = \left(\frac{A_2}{A_1}\right)^{1/3} \Rightarrow 2^3 = \frac{A_2}{9}$

119. For a common-emitter transistor amplifier, the current gain is 60. If the emitter current is 6.6mA then its base current is(1) 6.492 mA(2) 0.108 mA(3) 4.208 mA(4) 0.343 mA

KEY: 2

HINT: $\frac{I_E}{I_B} = 1 + \beta \Longrightarrow I_B = \frac{I_E}{1 + \beta}$

120.If a transmitting antenna of height 105m is placed on a hill, then its coverage area is
(1) $4224 km^2$ (2) $3264 km^2$ (3) $6400 km^2$ (4) $4864 km^2$

KEY: 1

 $A = \pi d^2 = \pi \left(2Rh_T \right)$

CHEMSITRY

121. In which of the following, the product of uncertainity in velocity and uncertainity in position of a micro particle of mass 'm' is <u>not</u> less than

1) $h \times \frac{3\pi}{2}$ 2) $\frac{h}{3\pi} \times m$ 3) $\frac{h}{4\pi} \times \frac{1}{m}$ 4) $\frac{h}{4\pi} \times m$ **KEY: 3** $m\Delta v.\Delta n \ge \frac{h}{4\pi} \Longrightarrow \qquad \Delta v.\Delta n \ge \frac{h}{4\pi} \times \frac{1}{m}$ HINT: An element has $[Ar]3d^1$ configuration in its +2 oxidation state. Its position in the periodic table 122. is 2) period-3, group-7 1) period-3, group-3 3) period-4, group-3 4) period-3, group-9 **KEY: 3** $4s^2 3d^1 = Scandium$ HINT: Period: 4, group:3 In which of the following molecules all bond lengths are not equal? 123. 1) SF_6 2) PCl_5 **3)** BCl_{3} 4) CCl **KEY: 2** $PCl_5 \rightarrow 2arial$ HINT: 3 Equitorial

Arial>equatorial

124. In which of the following molecules maximum number of lone pairs is present on the central atom?

1) NH_3 **2)** H_2O **3)** ClF_3 **4)** XeF_2

KEY: 4

HINT: In XeF₂

2 bond pairs, 3 lone pairs

Page 30 of 36

	THE	NARAYAN	A JUNIOR COLLE	GE		
125.		ollowing is the kinetic t temperature T(K)?	e energy of a gaseous mixtu	re containing 3g of hydrogen		
	1) 3 RT	2) 6RT	3) 4RT	4) 8RT		
KEY:						
HINT	$n = \frac{3}{2} + \frac{80}{32} = 4$					
	$KE = \frac{3}{2}nRT = \frac{3}{2} \times 4$					
126.		four different gases v cooling the gas which 2) A	-	04.1, 154.3, 405.5 and 126.0K 4) C		
KEY:	· ·	2) A	5) D	4) C		
	: High critical tempera \Rightarrow easily liquificable					
127.			d to react completely with	a 200ml of 0.02M oxalic acid		
	solution in acidic me	edium. The value of <u>x</u>	is A JAV			
	1) 0.04	2) 0.01	3) 0.03	4) 0.02		
KEY:						
HINT	: $N_1 V_1 = N_2 V_2$					
	$40 \times 5 \times x = 200 \times 0.0$)2×2				
100	$\Rightarrow x = 0.04$					
128.	Given that $C \rightarrow C O$	$\cdot \Lambda H^0 - \nu k I$				
	$C_{(s)} + O_{2(g)} \to CO_{2(g)}$					
	$2CO_{(g)} + O_{2(g)} \rightarrow 2C$	$CO_{2(g)}; \Delta H^o = -y kJ$				
	The enthalpy of for	mation of CO will be				
	1) $\frac{y-2x}{3}$	2) $\frac{y-2x}{2}$	3) $\frac{2x-y}{2}$	4) $\frac{x-y}{2}$		
KEY:						
HINT	$Eq(1) - \frac{Eq(2)}{2}$	$\Rightarrow \frac{y-2x}{2}$				
129.	At 400K, in a 1.0L v	vessel N ₂ O ₄ is allowed	to attain equilibrium			
	$N_2O_{4(g)} \square 2NO_{2(g)}$					
	At equilibrium the total pressure is 600mm Hg, when 20% of N_2O_4 is dissolved. The K_p value for					
	the reaction is	total pressure is ocom	in ing, when 20 / 0 of 10 ₂ 0 ₄	is dissolved. The m _p value for		
	1) 50	2) 100	3) 150	4) 200		
KEY:	,	_) _ * *	-)	-) =		
HINT	$: N_2O_4 \square 2NO_2$					
	C O					
	$\frac{4C}{5} = \frac{2C}{5} = \frac{4C}{5} $					
	5 5					
	$\frac{4C}{4C} + \frac{2C}{4C} = \frac{6C}{4C} = 60$	0				
	$\Rightarrow C = 500$					
	$K_{p} = \frac{\left(\frac{2C}{5}\right)^{2}}{\frac{4C}{5}} = \frac{C}{5} = \frac{500}{5} = 100$					
	$K_p = \frac{\sqrt{5}}{4C} = \frac{C}{5} =$	$\frac{300}{5} = 100$				
	$\frac{1}{5}$ 5	~				

Page **31** of **36**

$\begin{aligned} & \textbf{(PC)} \\ & $	w.mye	engg.com Al			aper & Solutions by Narayar		
1) $CH_{2}COONH_{4}$ 2) $CH_{3}COON_{4}$ 3) $NH_{4}CI$ 4) $Na_{3}SO_{4}$ KEY: 3 HINT: cationic hydrolysis S.A.+W. B. $: NH_{4}CI$ $NH_{3} + HCI$ W. B. S.A. 131. Calgon is (1) $Na_{4}HPO_{4}$ (2) $Na_{7}PO_{4}$ (3) $Na_{6}PO_{16}$ (4) $NaH_{2}PO_{4}$ KEY: 3 SOI: $Na_{6}PO_{4}$ 132. Consider the following statements. 1) Cs' ion is more highly hydrated than other alkali metal ions 1) Among the alkali metals only libhium forms a stable nitride by direct combination with mitrogen III) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, one Li forms peroxide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): $AlCl_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a line through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a line through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCR_{7}$ exists as a dimer through halogen bridged bonds. Reason (B): $AlCCl_{7}$ exists as a dimer through halogen of (A) (2) Both (A) and (R) are true buil (R) is not the correct explanation of (A) (3) (A) is intrue, but (R) is is not true (4) (1) figh concentration of of nitrates in drinking water (3) High concentration of older in drinking water (4) High concentration of Nitrate 135. Which of the following couses the homol							
HINT: cationic hydrolysis S.A.+W.B. $\therefore NH_{c}Cl$ $NH_{s} + HCl$ W.B. S.A. 131. Calgon is (1) $Na_{2}HPO_{s}$ (2) $Na_{s}PO_{s}$ (3) $Na_{a}P_{s}O_{10}$ (4) $NaH_{2}PO_{s}$ KEY: 3 SOL: $Na_{a}P_{s}O_{10}$ 132. Consider the following statements. 1) Cs ⁻ ion is more highly hydrated than other alkali metal ions 11) Among the alkali metals only lithium forms a stable nitride by direct combination with nitrogen 111 Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration emergy 133. Assertion (A): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{4}$ exists the but (R) is not the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes: "Blue baby syndrome" (1) High concentration of eating in drinking water (2) High concentration of olightates in drinking water (3) High concentration of Sulphates in drinking water (4) High concentration of Nitrate 135. Which of the following belongs to the homologons series of $C_{2}H_{4}O_{2}N$ $1) C_{2}H_{2}O_{3}N$ 2) $C_{2}H_{2}O_{3}$ 3) $C_{4}H_{2}O_{2}N$ KEY: 4 SOL: High concentration of Nitrate 136. Which of the following belongs to the homologons series of $C_{2}H_{4}O_{2}N$ $1) C_{4}H_{2}O_{3}N$ 2) $C_{6}H_{2}O_{3}$ 3) 23.2 4) 29.6 KEY: 2 SOL: $9_{6}N = \frac{28}{22400} \times \frac{45}{0.3} \times 100=18.75\%$	130.						
S.A.+W.B. : $MI_{i}CI$ $MI_{i}+HCI$ W.B. S.A. 13. Calgon is (1) $Na_{2}HPO_{i}$ (2) $Na_{2}PO_{i}$ (3) $Na_{6}P_{i}O_{11}$ (4) $NaH_{2}PO_{i}$ KEY: 3 SOL: $Na_{6}P_{i}O_{11}$ 13. Consider the following statements. 1) Cs ² ion is more highly hydrated than other alkali metal ions 11) Among the alkali metals only lifthium forms a stable nitride by direct combination with nitrogen III) Among the alkali metals Li, Na, K, Rb, othe metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, other spervide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 13. Assertion (A): $AICI_{i}$ gets stability by accepting electrons from the bridged bands. Reason (R): $AICI_{i}$ gets stability by accepting electrons from the bridged bands. Reason (R): $AICI_{i}$ gets stability by accepting electrons from the bridged balogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (4) High concentration of rotet 13. Which of the following causes "Blue baby syndrome" (1) High concentration of Nitrate 13. Which of the following belongs to the homologous series of $C_{i}H_{i}O_{2}N$ (KY: 4 SOL: due to difference of CH_{2} 13. Multice the following belongs to the homologous series of $C_{i}H_{i}O_{2}N$ (KY: 4 SOL: due to difference of CH_{2} 13. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $\% N = \frac{28}{22400} \times \frac{45}{0.3} \times 100=18.75\%$			c.				
$NH_3 + HCl$ $W.B. S.A.$ 13. Calgon is (1) Na ₂ HPO ₄ (2) Na ₃ PO ₄ (3) Na ₆ PO ₁₈ (4) NaH ₂ PO ₄ KEY: 3 SOL: Na ₆ PO ₈ 13. Consider the following statements. (1) Cs ⁺ ion is more highly hydrated than other alkali metal ions (1) Among the alkali metals only lithium forms a stable nitride by direct combination with nitrogen III) Among the alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting halogen (1) I (2) II (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 13. Assertion (A): $AlCl_2$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_1$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 13. Which of the following earses "Blue baby syndrome" (1) High concentration of Nitrate 13. Which of the following belongs to the homologous series of $C_1H_0O_2N$ KEY: 3 SOL: High concentration of Nitrate 13. Which of the following associates in drinking water (2) High concentration of Sliphates in drinking water (3) $C_1H_0O_2N$ (2) $C_1H_0O_2N$ (3) $C_2H_0O_2$	ΠΙΝΙ		5				
 W.B. S.A. 131. Calgon is (1) Na,HPO2 (2) Na,PO3 (3) Na,P3O3 (4) NaH2PO4 KEY: 3 SOL: Na,P3O3 SOL: Due to more Hight hydrated than other alkali metal tors the highest melting point (V) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point (V) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): AICL, exists as a dimer through halogen bridged bonds. Reason (R): AICL3 gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true (A) (A) is not of opper in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of nitrates in drinking water (5) High concentration of Nitrate 135. Which of the following belongs to the homologous series of C₂H₂O₂N (1) C₄H₆O₃N (2) C₄H₄O₂N (3) C₆H₆O₃N (4) C₆H₆O₃N 10. C₆H₆O₃N (3) C₈H₆O₃N (4) C₈H₆O₃N (5) II (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B		$\therefore NH_4Cl$					
 131. Calgon is (1) Na₂HPO₄ (2) Na₅PO₄ (3) Na₆P₆O₁₅ (4) NaH₂PO₄ 132. Consider the following statements. 1) Cs[×] ion is more highly hydrated than other alkali metal ions 1) Among the alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb outy Li forms perovide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): AlCl₂ exists as a dimer through halogen bridged bonds. Reason (R): AlCl₂ exists as a dimer through halogen bridged bonds. Reason (R): AlCl₂ exists as a dimer through halogen bridged bonds. Reason (R): AlCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reason (R): alCl₂ exists as a dimer through halogen bridged bonds. Reson (R): alCl₂ exists as a dimer through halogen bridged bonds. 13. Assertion (A): all Cl₂ exists as a dimer through halogen bridged bonds. Reson (R): alCl₂ exists as a dimer through halogen bridged bonds. Reson (R): alCl₂ exists as a dimer through halogen bridged bonds. Reson (R): alCl₂ exists as a dimer dimension of (A) (3) bot true, but (R) is not true (4) (A) is not true, but (R) is true (5) Due to completion of octet (4) High con		$NH_3 + HCl$					
(1) $Na_{z}HPO_{1}$ (2) $Na_{z}PO_{1}$ (3) $Na_{c}P_{c}O_{18}$ (4) $NaH_{2}PO_{1}$ KEY: 3 SOL: $Na_{c}P_{c}O_{18}$ 13. Consider the following statements. 1) Cs^{-1} ion is more highly hydrated than other alkali metal ions 1) Among the alkali metals only liftium forms a stable nitride by direct combination with nitrogen III) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 13. Assertion (A): $AlCl_{3}$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_{3}$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true but (R) is not the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) As true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (5) High concentration of octet 13. Which of the following causes "Blue baby syndrome" (4) High concentration of subplates in drinking water (5) High concentration of nitrates 13. Which of the following belongs to the homologous series of $C_{2}H_{6}O_{2}N$ (b) $C_{6}H_{10}O_{8}N$ (c) $C_{6}H_{9}O_{8}N$ (c) $C_{6}H_{10}O_{8}N$ (c) $C_{6}H_{9}O_{8}N$ (c) $C_{7}H_{10}O_{8}N$ (c) $C_{1}H_{9}O_{8}N$ (c) $C_{7}H_{10}O_{8}N$ (c) $C_{1}H_{9}O_{8}N$ (c) $C_{7}H_{10}O_{8}N$ (c) $C_{1}H_{9}O_{8}N$ (c) $C_{7}H_{10}O_{8}N$ (c) $C_{8}H_{9}O_{8}N$ (c) $C_{8}H_{9}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c) $C_{8}H_{8}O_{8}N$ (c							
KFY: 3 SOL: $Na_0 l_0^2 Q_8$ 13. Consider the following statements. () Cs' ion is more highly hydrated than other alkali metal ions (1) Among alkali metals only lithium forms a stable nitride by direct combination with nitrogen (1) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point (Y) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) (2) (1) (3) (1) (4) IV KFY: 2 SOL: Due to more Hydration energy 133. Assertion (A): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ e	131.	-					
SOL: $Na_{0}B_{0}^{2}$ 13. Consider the following statements. 1) Cs ⁺ ion is more highly hydrated than other alkali metal ions 11) Among the alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 11) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 11) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 11) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 11) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 12) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point 13. Assertion (A) : $AlCl_{3}$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (4) High concentration of octet 13. Which of the following causes "Blue baby syndrome" (1) High concentration of otoper in drinking water (2) High concentration of oroper in drinking water (3) High concentration of oroper in drinking water (4) High concentration of oroper in drinking water (4) High concentration of oroper in drinking water (3) High concentration of oroper in drinking water (4) High concentration of oroper in drinking water (5) High concentration of oroper in drinking water (6) High concentration of oroper in drinking water (7) High concentration of Distate 13. Which of the following belongs to the homologous series of $C_xH_xO_xN$ 1) $C_xH_{u0}O_xN$ 2) $C_xH_xO_xN$ 3) $C_xH_{u0}O_xN$ 4 SoL: due to difference of CH_2 13. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SoL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	VEV.		(2) Na_3PO_4	(3) $Na_6P_6O_{18}$	(4) NaH_2PO_4		
 132. Consider the following statements. I) Cs[*] ion is more highly hydrated than other alkali metal ions II) Among the alkali metals only lithium forms a stable nitride by direct combination with nitrogen III) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb only Li forms perovide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): AlCl₁ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (2) High concentration of octet I34. Which of the following causes "Blue baby syndrome" (1) High concentration of Sulphates in drinking water (2) High concentration of Nitrate 135. Which of the following belongs to the homologous series of <i>C</i>₂<i>H</i>₈<i>O</i>₂<i>N</i> (1) <i>C</i>₆<i>H</i>₁₀<i>O</i>₂<i>N</i> (2) <i>C</i>₆<i>H</i>₆<i>O</i>₂<i>N</i> (3) <i>C</i>₆<i>H</i>₁₀<i>O</i>₂<i>N</i> (4) <i>I</i>(<i>S</i>) 136. Which of the following belongs to the homologous series of <i>C</i>₂<i>H</i>₈<i>O</i>₂<i>N</i> (1) <i>C</i>₆<i>H</i>₁₀<i>O</i>₂<i>N</i> (2) <i>C</i>₆<i>H</i>₆<i>O</i>₂<i>N</i> (3) <i>C</i>₆<i>H</i>₁₀<i>O</i>₂<i>N</i> (4) <i>I</i>(<i>S</i>) an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 (3) 18.7 (3) 2.2 (4) 29.6 KEY: 2 							
h) Cs [*] ion is more highly hydrated than other alkali metal ions II) Among the alkali metals only lithium forms a stable nitride by direct combination with nitrogen III) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) 1 (2) I (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy I33. Assertion (A): $AlCl_1$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (2) High concentration of octet I34. Which of the following causes: "Blue baby syndrome" (1) High concentration of sulphates in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of sulphates in drinking water (4) High concentration of Nitrate I35. Which of the following belongs to the homologous series of $C_2H_8O_2N$ 1) $C_8H_8O_0N$ 2) $C_8H_8O_2N_2$ 3) $C_8H_8O_2N_2$ 4) $C_8H_{10}O_2N$ KEY: 3 SOL: High concentration of Nitrate I36. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$			owing statements.				
III) Among alkali metals Li, Na, K, Rb, the metal Rb has the highest melting point IV) Among alkali metals Li, Na, K, Rb only Li forms peroxide when heated with oxygen (1) 1 (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy I33. Assertion (A): A/Cl_1 exists as a dimer through halogen bridged bonds. Reason (R): A/Cl_2 gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true and (R) is the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not true, but (R) is not true (4) (A) is not of cetet I34. Which of the following causes "Blue baby syndrome" (1) High concentration of sulphates in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of sulphates in drinking water (4) High concentration of sulphates in drinking water (4) High concentration of Nitrate I35. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_1O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_1O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 I36. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		I) Cs ⁺ ion is more II) Among the all	e highly hydrated that				
(1)1 (2) (2) II (3) III (4) IV KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): $AlCl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AlCl_3$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is not true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of luphates in drinking water (3) High concentration of nitrates 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (4) High concentration of Nitrate 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		III) Among alkal			0		
KEY: 2 SOL: Due to more Hydration energy 133. Assertion (A): A/Cl_3 exists as a dimer through halogen bridged bonds. Reason (R): A/Cl_3 gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of lead in drinking water (3) High concentration of sulphates in drinking water (4) High concentration of opper in drinking water (5) High concentration of opper in drinking water (6) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$, .		_			
133. Assertion (A): $AICl_3$ exists as a dimer through halogen bridged bonds. Reason (R): $AICl_3$ gets stability by accepting electrons from the bridged halogen (1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of sulphates in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of sulphates in drinking water (4) High concentration of ocpper in drinking water (4) High concentration of ocpper in drinking water (5) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	KEY:		(2) 11	(5) 111			
Reason (R): $AICl_3$ gets stability by accepting electrons from the bridged halogen(1) Both (A) and (R) are true and (R) is the correct explanation of (A)(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)(3) (A) is true, but (R) is not true(4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet134. Which of the following causes "Blue baby syndrome"(1) High concentration of lead in drinking water(2) High concentration of sulphates in drinking water(3) High concentration of form the bridged halogen in drinking water(4) High concentration of opper in drinking water(4) High concentration of Nitrate135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_3N$ (4) $C_6H_{10}O_3N$ (5) $C_6H_8O_2N_2$ (6) CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is(1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2SOL: $%eN = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	SOL:	Due to more Hydr	ation energy				
Reason (R): $AICl_3$ gets stability by accepting electrons from the bridged halogen(1) Both (A) and (R) are true and (R) is the correct explanation of (A)(2) Both (A) and (R) are true but (R) is not the correct explanation of (A)(3) (A) is true, but (R) is not true(4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet134. Which of the following causes "Blue baby syndrome"(1) High concentration of lead in drinking water(2) High concentration of sulphates in drinking water(3) High concentration of form the bridged halogen in drinking water(4) High concentration of opper in drinking water(4) High concentration of Nitrate135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_3N$ (4) $C_6H_{10}O_3N$ (5) $C_6H_8O_2N_2$ (6) CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is(1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2SOL: $%eN = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	133.	Assertion (A): AlCl. exists as a dimer through halogen bridged bonds					
(1) Both (A) and (R) are true and (R) is the correct explanation of (A) (2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of opper in drinking water (4) High concentration of copper in drinking water (5) High concentration of copper in drinking water (6) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$			5				
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A) (3) (A) is true, but (R) is not true (4) (A) is not true, but (R) is true (4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of sulphates in drinking water (4) High concentration of copper in drinking water (4) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$							
(4) (A) is not true, but (R) is true KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		(2) Both (A) and	(R) are true but (R) is a				
KEY: 1 SOL: Due to completion of octet 134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of copper in drinking water (5) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$							
134. Which of the following causes "Blue baby syndrome" (1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of copper in drinking water (4) High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	KEY:		but (R) is true				
(1) High concentration of lead in drinking water (2) High concentration of sulphates in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of copper in drinking water KEY: 3 SOL: High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	SOL:	Due to completion					
(2) High concentration of sulphates in drinking water (3) High concentration of nitrates in drinking water (4) High concentration of copper in drinking water KEY: 3 SOL: High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_3H_8O_2N$ (1) $C_6H_{10}O_3N$ (2) $C_6H_8O_2N_2$ (3) $C_6H_{10}O_2N_2$ (4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is (1) 16.9 (2) 18.7 (3) 23.2 (4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	134.						
(3) High concentration of nitrates in drinking water (4) High concentration of copper in drinking water KEY: 3 SOL: High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$							
KEY: 3 SOL: High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		(3) High concentra	ation of nitrates in drin	king water			
SOL: High concentration of Nitrate 135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	KEV.	•	ation of copper in drinl	king water			
135. Which of the following belongs to the homologous series of $C_5H_8O_2N$ 1) $C_6H_{10}O_3N$ 2) $C_6H_8O_2N_2$ 3) $C_6H_{10}O_2N_2$ 4) $C_6H_{10}O_2N$ KEY: 4 SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$			n of Nitrate				
KEY: 4SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is1) 16.92) 18.73) 23.24) 29.6KEY: 2SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		•		homologous series of ($C_5H_8O_2N$		
KEY: 4SOL: due to difference of CH_2 136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrtogen is1) 16.92) 18.73) 23.24) 29.6KEY: 2SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$		1) $C_6 H_{10} O_3 N$	2) $C_6 H_8 O_2 N_2$	$3)C_6H_{10}O_2N_2$	4) $C_6 H_{10} O_2 N$		
136. In Dumas method, 0.3g of an organic compound gave 45mL if nitrogen at STP. The percentage of nitrogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	KEY:						
of nitrtogen is 1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$			2				
1) 16.9 2) 18.7 3) 23.2 4) 29.6 KEY: 2 SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	136.		d, 0.3g of an organic o	compound gave 45mL	if nitrogen at STP. The percentage		
SOL: $\%N = \frac{28}{22400} \times \frac{45}{0.3} \times 100 = 18.75\%$	IZEV-	1) 16.9	2) 18.7	3) 23.2	4) 29.6		
			5				
Page 32 of 36	SOL:	$N = \frac{20}{22400} \times \frac{10}{0.1}$	$\frac{1}{3} \times 100 = 18.75\%$				
					Page 32 of 36		

	$(CH_3)_2 CH - CH = CH - CH = CH - C$	-	
	1) 2, 7-dimethyl -3, 5-nonadiene	C_2H_5 2) 2, 7-dimential -2-entrylhed	ntadiana
	3) 2-methyl -7 –ethyl-3, 5-octadiene	4) 1, 1-dimethyl-6-ethyl-2.	
EY:		r) r, r annethyr o ethyr 2	, i neptudiene
<u>эт.</u>	$CH_3 - CH - CH = CH - CH = CH - CH$	$H - CH - CH_2 - CH_3$	
DL:	CH_3	CH_3	
8.	Match the following		
	LIST – I	LIST-II	
	A) Ferromagnetic	1) O_2	
	B) Anti ferro magnetic	2) CrO ₂	
	C) Ferri magnetic	3) MnO	
	D) Para magnetic	4) <i>Fe</i> ₃ <i>O</i> ₄	
		5) $C_6 H_6$	
	A B C D		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
EY:			
DL:	-		
9.	The vapour pressures of pure benzen mole fraction of benzene is vapour ph		
	toluene is	ase incontact with equinional	solution of benzene and
	1) 0.073 2) 0.027	3) 0.27	4) 0.73
	4		
ĿY:	1 1 /		
	$P_{\rm T} = 160 {\rm x} - +60 {\rm x} - =110$	$P_{p} = P_{p}^{0} \ge B = 160 \ge -100 \ge 100 = 100$	
	$P_T = 160 \mathrm{x} \frac{1}{2} + 60 \mathrm{x} \frac{1}{2} = 110$	$P_B = P_B^O \ge B = 160 \ge \frac{1}{2}$	
	$P_B = P_T X_B \Longrightarrow 80 = 110.Y_B$	$P_B = P_B^O \ge B = 160 \ge \frac{1}{2}$	
	$P_B = P_T X_B \Longrightarrow 80 = 110.Y_B$	$P_B = P_B^O \times B = 160 \times \frac{1}{2}$	
DL:	$P_B = P_T X_B \Longrightarrow 80 = 110 Y_B$ $Y_B = \frac{80}{110} = 0.73$	$P_B = P_B^o \times B = 160 \times \frac{1}{2}$	
DL:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte	AYANA GROUP	(4) 120
DL: 0.	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte (1) 60 (2) 140	$P_{B} = P_{B}^{o} \times B = 160 \times \frac{1}{2}$ (3) 180	(4) 120
DL: 0. EY:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte (1) 60 (2) 140 4	AYANA GROUP	(4) 120
DL: 0. EY:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte (1) 60 (2) 140 4 $\Delta T_{f} = K_{i}m$	(3) 180	(4) 120
DL: 0. EY:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte (1) 60 (2) 140 4	(3) 180	(4) 120
DL: 10. EY: DL:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile, non electrolyte (1) 60 (2) 140 4 $\Delta T_{f} = K_{i}m$	(3) 180	
DL: 10. EY:	$P_{B} = P_{T}X_{B} \Longrightarrow 80 = 110.Y_{B}$ $Y_{B} = \frac{80}{110} = 0.73$ 6g of a non volatile , non electrolyte (1) 60 (2) 140 4 $\Delta T_{f} = K_{t}m$ $0.93 = 1.86 \times \frac{6}{GMW} \times \frac{1000}{100} \Longrightarrow GMW = 1$	(3) 180 20 and anode respectively durin	

- Hint : Conceptual
- 142. The slope of the graph drawn between /nk and 1/T as per Arrhenius equation gives the value (R = gas constant, Ea = Activation energy)

Page 33 of 36

www.mye	engg.com AP EAMCET 2016 Question Paper & Solutions by Narayana
	🖉 NARAYANA JUNIOR COLLEGE
	1) $\frac{R}{E_a}$ 2) $\frac{E_a}{R}$ 3) $\frac{-E_a}{R}$ 4) $\frac{-R}{E_a}$
	Conceptual
143. V	Which is not the correct statement in respect of chemisorptions?1) Highly specific adsorption2) Irreversible adsorption
	3) Multilayered adsorption 4) High enthalpy of adsorption
KEY Hint	Conceptual
144.	Which of the following is carbonate ore?
	1) Cuprite 2) Siderite 3) Zineite 4) Bauxite
KEY	
Hint :	$FeCO_3$
145.	Which one of the following statement is not correct?
	1) O_3 is used as germicide
	 2) In O₃, O-O bond length is identical with that of molecular oxygen 3) O₃ is an oxidizing agent
	4) The shape of O3 molecule is angular
KEY	
	Conceptual
146.	Which of the following reactions does not take place?
	1) $F_2 + 2Cl \rightarrow 2F^- + Cl_2$ 2) $Br_2 + 2l^- \rightarrow 2Br + l_2$
	3) $Cl_2 + 2Br \rightarrow 2Cl^- + Br_2$ 4) $Cl_2 + 2F^- \rightarrow 2Cl + F_2$
KEY	:4
Hint :	Cl_2 cannot displace F_2
147.	 At about 1000K, it mainly consists of S2 molecules The oxidation state of sulphur is never less than +4 in its compounds S2 molecule is paramagnetic
LEN	4) Rhombic sulphur is readily soluble in CS2
KEY Hint ·	Conceptual
148.	Which of the following reactions does not involve, liberation of oxygen?
	1) $XeF_4 + H_2O \rightarrow 2$) $XeF_4 + O_2F_2 \rightarrow 3$) $XeF_2 + H_2O_2 \rightarrow 4$) $XeF_6 + H_2O \rightarrow 4$
KEY	
Hint :	$X_{e}F_{6} + 3H_{2} \rightarrow FeO_{3} + 6HF$
149.	Select the correct IUPAC name1) Penta ammonia carbonate cobalt (III) chloride2) Pentammine carbonate cobalt chloride
KEY	3) Pentammine carbonato cobalt (III) chloride 4) Cobalt (III) pentammine carbonate chloride
	Conceptual
150.	Which of the following characteristics of the transition metals is associated with their catalytic activity?
	1) Color of hydrated ions2) Diamagnetic behavior3) Paramagnetic behavior4) Variable oxidation
KEY Hint :	

Page **34** of **36**

	THE		A JUNIOR CO	LLEGE
151.	Observe the follow	ing polymers		
	PHBV	Nylon 2-nylon 6	Giyptal	Bakelite
	(A)	(B)	(C)	(D)
	(1) (D)	(2) (A), (B)	(3) (D)	(4) (C), (D)
KEY:				
	[: Conceptual			
152.	Observe the follow	6		
	i) Sucrose has glyc	6		
		ent in both plants and		
	,	s D-galactose and D-g		(A) (i) (iii)
KEY	(1) (i), (ii), (iii)	(2) (i), (ii)	(3) (ii), (iii)	(4) (i), (iii)
153.	C: Conceptual Identify the antiox	ident used in feeds		
155.	(1) Aspartame	iuanit useu in ioous	(2) Sodium benz	zoate
	(3) Ortho-sulpho be	nzimide	(4) Butylated hy	
KEY	• /		(I) Butylated Hy	droxyr tordene
	: Conceptual			
154.	Conceptuur			
	Cl			CH ₃
		dry eth	ier	
	+2Ni	$a + CH_3Cl$ dry etr	\rightarrow \bigcirc	+2NaCl
	~	· · · · ·		
	This reaction is kn	0W 98		
	(1) Wurtz-Fittig rea		(2) Wurtz reaction	on
	(3) Fittig reaction		(\$) Friedel-craft	
	(-)			
KEY	: 1			
HINT	ſ :			
	Cl			CH ₂
	CI av	dry eth		3
	+2N	$a + CH_3Cl - \frac{dry eth}{dry}$	\rightarrow	+2NaCl
	~	· · · · ·		
	Deaction between	ulkal halida and arvl h	alida with sodium r	netal in the presence of (
155.		llowing sequence of rea		netai în the presence of
155.				
	2-methyl-2-bromo	propane $\xrightarrow{Mg}_{dry \ ether} X$	$\xrightarrow{n_2 o} Z$	
	(1) Propane	(2) 2-methyl propene	(3) 2-methyl pro	opane (4) 2-methyyl
KEY	· / I	(-) =, Propene	(-) =	r · · · · · · · · · · · · · · · · · · ·
HINT				
		propane $\xrightarrow{Mg}_{dry \ ether} X$	$\xrightarrow{H_2O}$ 7	
		dry ether		
	MgBr			
	1			

dry ether

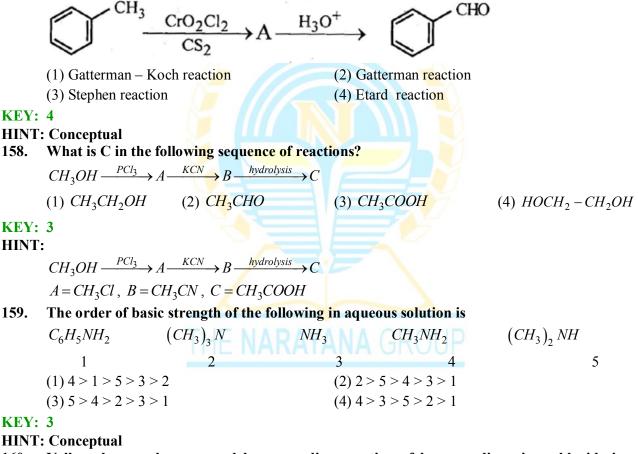
l butane

 $X = CH_3 - C - CH_3$ $| Y = CH_3CH(CH_3)CH_3$ CH_3

Page 35 of 36

www.myengg.com AP EAMCET 2016 Question Paper & Solutions by Narayana NARAYANA JUNIOR COLLEGE

In which of the following reactions the product is not correct? 156.


(1)
$$CH_3CHO \xrightarrow{LiAlH_4} CH_3CH_2OH$$

 $CH_3COCH_3 \xrightarrow{Zn-Hg} CH_3 - CH - CH_3$
(2) OH

(3)
$$CH_3CH_2CHO \xrightarrow{(i)H_2N-NH_2} CH_3CH_2CH_3$$

(4) $CH_3CH_2CHO \xrightarrow{KMnO_4} CH_3CH_2COOH$

KEY: 2

$$CH_3COCH_3 \xrightarrow{Zn-Hg} CH_3 - CH_2 - CH_3$$
HINT:

Identify the name of the following reaction 157.

HINT: Conceptual

Yellow dye can be prepared by a coupling reaction of benzene diazonium chloride in acid 160. medium with X. Identify X from the following

(1) Aniline	(2) Phenol	(3) Cumene	(4) Benzene
-------------	------------	------------	-------------

KEY: 1

HINT: Benzene diazonium chloride undergoes coupling with aniline in acidic medium

Page 36 of 36